001     9022
005     20230426083016.0
024 7 _ |a 10.1103/PhysRevB.81.125102
|2 DOI
024 7 _ |a WOS:000276248900039
|2 WOS
024 7 _ |a 2128/10998
|2 Handle
037 _ _ |a PreJuSER-9022
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB418
|a Friedrich, C.
|b 0
|u FZJ
245 _ _ |a Efficient implementation of the GW approximation within the all-electron FLAPW method
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 125102
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 81
|x 1098-0121
|y 12
500 _ _ |a The authors acknowledge valuable discussions with Markus Betzinger, Andreas Gierlich, Gustav Bihlmayer, Takao Kotani, Mark van Schilfgaarde, and Tatsuya Shishidou as well as financial support from the Deutsche Forschungsgemeinschaft through the Priority Program 1145.
520 _ _ |a We present an implementation of the GW approximation for the electronic self-energy within the full-potential linearized augmented-plane-wave (FLAPW) method. The algorithm uses an all-electron mixed product basis for the representation of response matrices and related quantities. This basis is derived from the FLAPW basis and is exact for wave-function products. The correlation part of the self-energy is calculated on the imaginary-frequency axis with a subsequent analytic continuation to the real axis. As an alternative we can perform the frequency convolution of the Green function G and the dynamically screened Coulomb interaction W explicitly by a contour integration. The singularity of the bare and screened interaction potentials gives rise to a numerically important self-energy contribution, which we treat analytically to achieve good convergence with respect to the k-point sampling. As numerical realizations of the GW approximation typically suffer from the high computational expense required for the evaluation of the nonlocal and frequency-dependent self-energy, we demonstrate how the algorithm can be made very efficient by exploiting spatial and time-reversal symmetry as well as by applying an optimization of the mixed product basis that retains only the numerically important contributions of the electron-electron interaction. This optimization step reduces the basis size without compromising the accuracy and accelerates the code considerably. Furthermore, we demonstrate that one can employ an extrapolar approximation for high-lying states to reduce the number of empty states that must be taken into account explicitly in the construction of the polarization function and the self-energy. We show convergence tests, CPU timings, and results for prototype semiconductors and insulators as well as ferromagnetic nickel.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2010-03-03
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schindlmayr, A.
|b 2
773 1 8 |a 10.1103/physrevb.81.125102
|b American Physical Society (APS)
|d 2010-03-03
|n 12
|p 125102
|3 journal-article
|2 Crossref
|t Physical Review B
|v 81
|y 2010
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.81.125102
|g Vol. 81, p. 125102
|0 PERI:(DE-600)2844160-6
|n 12
|q 81<125102
|p 125102
|t Physical review / B
|v 81
|y 2010
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.81.125102
856 4 _ |u https://juser.fz-juelich.de/record/9022/files/PhysRevB.81.125102.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9022/files/PhysRevB.81.125102.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9022/files/PhysRevB.81.125102.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9022/files/PhysRevB.81.125102.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9022/files/PhysRevB.81.125102.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9022
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1346
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)118397
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB881
981 _ _ |a I:(DE-Juel1)VDB1346
999 C 5 |a 10.1016/S0081-1947(08)60248-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.126.413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.129.62
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.139.A796
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.55.1418
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.56.2415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.34.5390
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.35.4170
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.41.3620
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.46.13051
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.126401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.125101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0038-1098(02)00028-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.245108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.126406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.4464
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.155208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.035101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.165105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2008.10.009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.140.A1133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.12.3060
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.6388
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.045104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.49.16214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.5.641
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.74.1827
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0010-4655(98)00174-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.37.10159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 F. Aryasetiawan
|y 2000
|2 Crossref
|t Advances in Condensed Matter Science
|o F. Aryasetiawan Advances in Condensed Matter Science 2000
999 C 5 |a 10.1103/PhysRevB.11.2109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.33.7017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.5058
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2006.07.018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 1983
|2 Crossref
|t Ergebnisse in der Elektronentheorie der Metalle
|o Ergebnisse in der Elektronentheorie der Metalle 1983
999 C 5 |a 10.1017/CBO9780511534867
|1 S. K. Kim
|2 Crossref
|9 -- missing cx lookup --
|y 1999
999 C 5 |a 10.1103/PhysRevB.23.5048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.125212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.085125
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.235102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.108.1377
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 T. C. Chiang
|y 1989
|2 Crossref
|t Electronic Structure of Solids: Photoemission Spectra and Related Data
|o T. C. Chiang Electronic Structure of Solids: Photoemission Spectra and Related Data 1989
999 C 5 |a 10.1103/PhysRevB.36.6566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.111383
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1415766
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.47.1174
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-0248(90)90701-L
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(73)90754-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.11.5179
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.165106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/7/1/126
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssb.200945074
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.9.600
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01325264
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.72.607
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21