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We present an implementation of the GW approximation for the electronic self-energy within the full-
potential linearized augmented-plane-wave �FLAPW� method. The algorithm uses an all-electron mixed prod-
uct basis for the representation of response matrices and related quantities. This basis is derived from the
FLAPW basis and is exact for wave-function products. The correlation part of the self-energy is calculated on
the imaginary-frequency axis with a subsequent analytic continuation to the real axis. As an alternative we can
perform the frequency convolution of the Green function G and the dynamically screened Coulomb interaction
W explicitly by a contour integration. The singularity of the bare and screened interaction potentials gives rise
to a numerically important self-energy contribution, which we treat analytically to achieve good convergence
with respect to the k-point sampling. As numerical realizations of the GW approximation typically suffer from
the high computational expense required for the evaluation of the nonlocal and frequency-dependent self-
energy, we demonstrate how the algorithm can be made very efficient by exploiting spatial and time-reversal
symmetry as well as by applying an optimization of the mixed product basis that retains only the numerically
important contributions of the electron-electron interaction. This optimization step reduces the basis size
without compromising the accuracy and accelerates the code considerably. Furthermore, we demonstrate that
one can employ an extrapolar approximation for high-lying states to reduce the number of empty states that
must be taken into account explicitly in the construction of the polarization function and the self-energy. We
show convergence tests, CPU timings, and results for prototype semiconductors and insulators as well as
ferromagnetic nickel.
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I. INTRODUCTION

Many-body perturbation theory with the GW approxima-
tion for the electronic self-energy offers a well-established
approach for the computation of excited electronic states
from first principles.1 In principle, the electronic self-energy
incorporates all many-body exchange and correlation effects
beyond the Hartree theory. The GW approximation contains
the electronic exchange exactly while the screening is treated
at the level of the random-phase approximation,2 where non-
interacting electron-hole ring diagrams are summed to all
orders. This makes the GW approximation particularly suited
for weakly to moderately correlated systems.

After its theoretical foundation by Hedin3 in 1965 it was
not before the middle of the 1980s that the computational
treatment of real materials became feasible. In spite of ap-
proximations in the numerical treatment that were necessary
due to the lack of computer power, the first results were very
promising. In these works,4–7 it could be shown that the the-
oretical band gap fell within a margin of 0.1 eV from the
experimental value for covalently bonded semiconductors.
After these pioneering studies, the GW approximation has
evolved into the method of choice for calculating electronic
excitations in solid-state systems.

So far, most codes still rely on the pseudopotential ap-
proximation, which restricts the range of materials that can
be examined. Transition-metal compounds and oxides, in
particular, cannot be treated efficiently in this approach. Two
early all-electron calculations using the GW approximation

were carried out by Hamada et al.8 for Si and by
Aryasetiawan9 for Ni, both within the linearized augmented-
plane-wave �LAPW� method. However, only very recently
were further all-electron implementations reported, based on
the full-potential LAPW �FLAPW� �Refs. 10 and 11�, the
linearized muffin-tin orbital �LMTO� �Refs. 12–14�, the
projector-augmented-wave �PAW� �Refs. 15–17�, and the
Korringa-Kohn-Rostoker method �Ref. 18� together with ap-
plications to a larger variety of systems.

While the calculation of GW band structures for small
systems has become routine, the scientific community is in-
creasingly interested in larger and more complex systems,
such as multicomponent materials, artificial heterostructures,
defects, interfaces, surfaces, clusters, and nanowires. In
codes using periodic boundary conditions, such systems
must be treated in supercell geometries often exceeding 100
atoms. The main obstacle in applying the GW approximation
in supercell calculations is the considerable demand of com-
putation time and memory. This is especially true for all-
electron methods, where the rapid oscillations close to the
atomic nuclei make the usage of the fast Fourier transforma-
tion impossible. Therefore, all-electron GW calculations for
large systems have so far been prohibitive. In this paper, we
describe numerical algorithms and approximations that make
all-electron GW implementations efficient and bring large
supercell calculations into reach.

The nonlocality of the self-energy operator is the main
reason for the large computational effort needed in GW cal-
culations. It leads to convolutions in reciprocal space, i.e.,
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summations over the Brillouin zone �BZ�, which is sampled
by a finite set of k points. Furthermore, the bare electron-
electron interaction diverges at the center of the BZ, giving
rise to a corresponding divergence and an anisotropy in the
dynamically screened interaction at k=0. A thorough treat-
ment of the � point is hence crucial for an accurate and
efficient BZ summation. Previous all-electron
implementations10,19 of many-body perturbation theory have
often bypassed this problem by reverting to a plane-wave
basis for the Coulomb potential and related propagators such
as the dielectric function but such a projection leads to a loss
of accuracy because it cannot resolve the rapid oscillations of
the orbitals close to the atomic nuclei without a prohibitively
large basis set. As a consequence, physical effects such as
core polarization are inadequately described. In an alterna-
tive approach, the so-called offset-� method, an auxiliary
k-point mesh that is shifted from the origin by a small but
finite amount is employed.12,16 In this way, the singularity is
avoided but the use of additional meshes increases the nu-
merical cost; even in the most favorable case, for cubic sym-
metry, the number of k points must at least be doubled. Fur-
thermore, the convergence of BZ integrals involving the
Coulomb matrix, for example, for the GW self-energy, may
be slow with respect to the k-point sampling due to the ap-
proximate treatment of the quantitatively important region
near the zone center. In this work, we take the � point ex-
plicitly into account and employ an analytical treatment of
the Coulomb singularity. We use a recently developed
procedure20 to transform the all-electron basis for the inter-
action potentials, the so-called mixed product basis,12 in such
a way that the divergence is restricted to a single matrix
element, which allows a treatment similar to a pure plane-
wave basis set.

The numerical cost of the BZ convolutions can be re-
duced considerably by employing spatial and time-reversal
symmetries. Not only can the k dependence of response
quantities be confined to the irreducible wedge of the BZ but
also the convolutions over the reciprocal space can be re-
stricted to an extended irreducible zone without loss of ac-
curacy. Furthermore, in the presence of inversion symmetry,
the all-electron mixed product basis can be transformed in
such a way that response matrices become real instead of
complex, which again reduces the numerical cost in terms of
computation time and memory demand.

We further demonstrate that we can afford to truncate the
number of basis functions considerably in the calculation of
the correlation part of the self-energy. This is achieved by a
basis transformation that diagonalizes the Coulomb matrix.
Eigenvectors with small eigenvalues then correspond to un-
important scattering contributions, which can be neglected in
a systematic way. This leads to an optimization of the basis
set and thus to a speed up of the computation.

The paper is organized as follows. In Sec. II, we give a
brief introduction to the GW approximation. In Sec. III, we
describe our all-electron implementation in detail: the mixed
product basis and its optimization, the k-point set, the treat-
ment of the �-point divergence, and the usage of spatial and
time-reversal symmetry. Section IV reports convergence tests
for Si and SrTiO3 as well as fundamental GW band gaps for
a variety of semiconductors and insulators. In addition, re-

sults for the localized 3d states of GaAs and ferromagnetic
Ni as an example of a 3d transition metal are discussed. In
order to illustrate the efficiency of the code, we also show
CPU timings for diamond in supercell geometries containing
up to 128 atoms. Finally we summarize our conclusions in
Sec. V.

II. GW APPROXIMATION

Angle-resolved photoelectron spectroscopy is the prime
experimental technique for the measurement of the electronic
band structure of crystalline materials. The excitations mea-
sured in photoelectron spectroscopy involve electron ejection
or injection and thus imply a change in the particle number
by one. The corresponding many-body excitation energies
Enq

� , where q is the wave vector, n the band index, and � the
electron spin, define the pole structure of the one-particle
Green function,

G��r,r�;�� = �
q

BZ

�
n

all
�nq

� �r��nq
��

�r��

� − Enq
� + E0 + i� sgn�Enq

� − E0�

�1�

with the quasiparticle wave functions �nq
� �r� and the many-

body ground-state energy E0. Here and in the following the
number � is infinitesimal, real, and positive, and by a sum
over Bloch vectors q, we always mean an integration over
the BZ multiplied by the density of q points V / �8�3� with
the crystal volume V. Hartree atomic units are used through-
out except where noted otherwise.

The quasiparticle wave functions �nq
� �r� and energies Enq

�

obey a set of one-particle differential equations,

ĥ0�nq
� �r� +� ��xc

� �r,r�;Enq� − vxc
� �r����r − r����nq

� �r��d3r�

= Enq
� �nq

� �r� , �2�

the so-called quasiparticle equations, where ĥ0 is the Kohn-
Sham �KS� Hamiltonian,

ĥ0 = −
1

2
�

2 + vext�r� + vH�r� + vxc
� �r� �3�

with the external, Hartree, and exchange-correlation poten-
tials, respectively,21 and �xc

� �r ,r� ;�� is the nonlocal, non-
Hermitian, and energy-dependent exchange-correlation self-
energy.

In practical implementations one usually treats the inte-
gral operator on the left-hand side of Eq. �2� as a small
perturbation. In first order, the quasiparticle energies are then
given by the nonlinear equation,

Enq
� = 	nq

� + �
nq
� ��xc

� �Enq
� � − vxc

� �
nq
� 	 �4�

with the KS wave functions 
nq
� and energies 	nq

� . This is
equivalent to neglecting off-diagonal elements of
�xc

� �Enq
� �−vxc

� in the basis of the KS wave functions. For the
self-energy, we use the GW approximation,
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�xc
� �r,r�;�� =

i

2�
� G0

��r,r�;� + ���W�r,r�;���ei���d��,

�5�

which constitutes the first-order term of the self-energy ex-
pansion in powers of the dynamically screened Coulomb in-
teraction W. Here

G0
��r,r�;�� = �

q

BZ

�
n

all

nq

� �r�
nq
��

�r��

� − 	nq
� + i� sgn�	nq

� �
�6�

is the time-ordered KS Green function, which is obtained
from Eq. �1� by replacing �nq

� �r� with the KS wave functions

nq

� �r� and Enq
� −E0 with the KS energies 	nq

� measured from
the Fermi energy.

The dynamically screened interaction obeys a Dyson-type
integral equation,

W�r,r�;�� = v�r,r�� +� v�r,r��P�r�,r�;��

�W�r�,r�;��d3r�d3r� �7�

with the bare Coulomb interaction v�r ,r��=1 / �r−r�� and the
polarization function P�r ,r� ;��, for which we employ the
random-phase approximation,2

P�r,r�;�� = −
i

2�
�
�
�

−�

�

G0
��r,r�;���

�G0
��r�,r;�� − ��ei���d��

= �
�

�
q,k

BZ

�
n

occ

�
n�

unocc


nq
��

�r�

n�k

� �r�
nq
� �r��
n�k

��

�r��

� 
 1

� + 	nq
� − 	

n�k

� + i�
−

1

� − 	nq
� + 	

n�k

� − i�� .

�8�

This approximation corresponds to time-dependent Hartree
theory and thus neglects exchange-correlation �e.g., exci-
tonic� effects in the dynamical screening. With the dielectric
function,


�r,r�;�� = ��r − r�� −� v�r,r��P�r�,r�;��d3r�, �9�

we can write the screened interaction in the closed form,

W�r,r�;�� =� 
−1�r,r�;��v�r�,r��d3r�. �10�

Many-body screening effects obviously enter with the sec-
ond term of Eq. �9� into the formalism. In fact, if we write
the screened interaction as a sum of the bare interaction and
a remainder,

W�r,r�;�� = v�r,r�� + Wc�r,r�;�� , �11�

then the self-energy �Eq. �5�� decomposes into the terms

�x
��r,r�� =

i

2�
� G0

��r,r�;� + ���v�r,r��ei���d�� �12�

and

�c
��r,r�;�� =

i

2�
� G0

��r,r�;� + ���Wc�r,r�;���d��,

�13�

which are identified as the exchange and the correlation con-
tributions to the electronic self-energy, respectively. We note
that the exponential factor allows to close the integration
path over the upper complex half plane in Eq. �12�. As
Wc�r ,r� ;�� falls off quickly enough with increasing fre-
quencies, we may take the limit �→0 before integrating in
Eq. �13�.

In the next section, we discuss several aspects of the
implementation that are important for the computational ef-
ficiency. The numerical procedure is based on an auxiliary
all-electron basis set, the mixed product basis, in which the
previous integral equations become matrix equations that can
be implemented easily. We have already explained this basis
set in detail in a previous publication20 and only sketch the
basic ideas here.

III. IMPLEMENTATION

A. FLAPW method

In the FLAPW method,22 space is partitioned into non-
overlapping atom-centered muffin tin �MT� spheres and the
interstitial region �IR�. The core-electron wave functions,
which are �predominantly� confined to the MT spheres, are
directly obtained from a solution of the fully relativistic
Dirac equation. The valence-electron wave functions with
spin � are expanded in interstitial plane waves �IPWs� in the
IR and numerical functions ualmp

� �r�=ualp
� �r�Y lm�er� inside

the MT sphere of atom a, where r is measured from the MT
center located at Ra. These numerical functions comprise
solutions of the KS equation for the spherically averaged
effective potential for p=0 and their first energy derivatives
ualm1

� �r�=�ualm0
� �r� /�	al

� for p=1 evaluated at suitably chosen
energy parameters 	al

� , and Y lm�er� denote the spherical har-
monics. The notation er=r /r with r= �r� indicates the unit
vector in the direction of r. In a given unit cell, the KS wave
function at a wave vector k with band index n and spin � is
then given by


nk
� �r�

= �
1


N
�
l=0

lmax

�
m=−l

l

�
p=0

1

Aalmp
nk� ualmp

� �r − Ra� if r � MT�a�

1


V
�

�k+G��Gmax

cG
nk�ei�k+G�·r if r � IR �

�14�

with the crystal volume V, the number of unit cells N, and
cutoff values lmax and Gmax. The coefficients Aalmp

nk� are deter-
mined by the requirement that the wave function is continu-

EFFICIENT IMPLEMENTATION OF THE GW… PHYSICAL REVIEW B 81, 125102 �2010�

125102-3



ous in value and first radial derivative at the MT sphere
boundaries. If desired, additional local orbitals for semicore
states23 or higher energy derivatives24 can be incorporated by
allowing p�2. We use the FLEUR code25 for the density-
functional theory �DFT� calculations.

B. Mixed product basis (MPB)

If the integral equations of Sec. II are rewritten in an
auxiliary basis set, they become matrix equations, which can
easily be treated in a computer code using standard linear-
algebra libraries. Equation �8� already indicates that this aux-
iliary basis set should accurately represent wave-function
products. This is generally true for all quantities that involve
two spatial coordinates and thus couple two incoming and
outgoing electrons with each other.

The FLAPW method uses continuous basis functions that
are defined everywhere in space but have a different math-
ematical representation in the MT spheres and the IR. For the
expansion of wave-function products, however, it is better to
employ two separate sets of functions that are defined only in
one of the spatial regions and zero in the other. In this way,
linear dependences that occur only in one region can easily
be eliminated, which overall leads to a smaller and more
efficient basis. The resulting combined set of functions is
called the MPB.12

Inside the MT spheres, the MPB must accurately describe
the products ualmp

�� �r�u
al�m�p�

� �r�. The angular parts
Y lm

� �er�Y l�m�
�er� can be represented by linear combinations of

spherical harmonics YLM�er� with �l− l���L� l+ l� and
−L�M �L while the radial parts define a set of product
functions UaLP

� �r�=ualp
� �r�u

al�p�

� �r�, where the index P counts
all possible combinations of l, l�, p, and p�. We emphasize
that, in general, the latter lie outside the vector space
spanned by the original numerical basis functions ualp

� �r�.
Initially, the set �UaLP

� �r�� is neither normalized nor orthogo-
nal and usually has a high degree of �near� linear depen-
dence. An effective procedure to remove these �near� linear
dependences is to diagonalize the overlap matrix and to re-
tain only those eigenvectors whose eigenvalues exceed a
specified threshold value.26 In this way, the MT functions
become orthonormalized. By using both spin-up and spin-
down products in the construction of the overlap matrix, we
make the resulting basis spin independent. In practice, the
basis set is reduced further by introducing a cutoff value Lmax

for the angular quantum number. On the other hand, it must
be supplemented with a constant MT function for each atom
in the unit cell, which is later needed to represent the eigen-
function that corresponds to the divergent eigenvalue of the
Coulomb matrix in the limit k→0. From the resulting MT
functions MaLMP�r�=MaLP�r�YLM�er�, we formally construct
Bloch functions.

In the IR, we use a set of IPWs with a cutoff
Gmax� �2Gmax in reciprocal space since the product of two
IPWs yields another IPW. Together with the MT functions,
we thus obtain the MPB �MI

k�r��= �MaLMP
k �r� ,MG

k �r�� for the
representation of wave-function products. Unlike the MT
functions, which have been explicitly orthonormalized, the
IPWs are not orthogonal to each other; the elements of their

overlap matrix can be calculated analytically and are given
by

�MG
k �M

G�

k� 	 = �kk�
OGG�

�k� = �kk�
�G−G�

, �15�

where �G are the Fourier coefficients of the step function,
which equals 1 in the IR and 0 in the MT spheres. We also
define a second set, the biorthogonal set,

M̃G
k �r� = �

G�

M
G�

k �r�O
G�G

−1 �k� . �16�

It fulfills the identities

�M̃I
k�MJ

k	 = �MI
k�M̃J

k	 = �IJ, �17a�

�
I

�MI
k	�M̃I

k� = �
I

�M̃I
k	�MI

k� = 1, �17b�

where the completeness relation is only valid in the subspace
spanned by the MPB, though. As the MT functions and the
IPWs are defined in different regions of space and the MT
functions are orthonormal, only the IPWs overlap in a non-
trivial way. It should be noted that the overlap matrix is k

dependent because the size of the MPB varies for different k

vectors.
In general, the matrix representation of real operators in

an arbitrary complex basis �f��r�� is Hermitian. If the system
has inversion symmetry and the basis functions fulfill

f��− r� = f�
� �r� , �18�

it is easy to show that the matrices become real symmetric.
Of course, this reduces the computational cost considerably,
in terms of both memory consumption and computation time.
However, according to the current definition only the IPWs
fulfill Eq. �18� while the MT functions do not. For a system
with inversion symmetry, we hence apply a unitary transfor-
mation of the MT functions such that Eq. �18� is satisfied.27

In the following, it is understood that all quantities are rep-
resented in this symmetrized basis if inversion symmetry is
present.

C. Formulation in the MPB

In this section, we reformulate the equations of Sec. II by
projecting onto the MPB and exploiting the identities in Eq.
�16�. Because of the exponential factor in Eq. �12�, we can
formally close the frequency integration contour with an in-
finite half circle over the positive imaginary plane without
changing the value of the integral. This contour integral then
equals the sum over the residues of the poles of the Green
function. The expectation value of the exchange term with
respect to a wave function 
nq

� �r� yields the well-known
Hartree-Fock expression

�
nq
� ��x

��
nq
� 	 = − �

k

BZ

�
n�

occ

�
I,J

vIJ�k�

��

n�q+k

� �
nq
� M̃I

k	�M̃J
k
nq

� �

n�q+k

� 	 �19�

with the projections
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�M̃I
k
nq

� �

n�q+k

� 	 =� M̃I
k�

�r�
nq
��

�r�

n�q+k

� �r�d3r �20�

and the Coulomb matrix20

vIJ�k� = �MI
k�v�MJ

k	 =� � MI
k�

�r�MJ
k�r��

�r − r��
d3rd3r�. �21�

The sum over the occupied states also comprises the core
states, which give an important contribution to the exchange
self-energy. Its evaluation is simplified considerably by the
fact that the core states can be treated as dispersionless
bands. We use a formalism derived by Dagens and Perrot.28

An efficient scheme for the calculation of the full nonlocal
Fock exchange potential including off-diagonal elements will
be presented elsewhere.27

With the projections �Eq. �20��, we readily obtain the rep-
resentation of the polarization function,

PIJ�k,��

= �
�

�
q

BZ

�
n

occ

�
n�

unocc

�M̃I
k
nq

� �

n�q+k

� 	�

n�q+k

� �
nq
� M̃J

k	

�
 1

� + 	nq
� − 	

n�q+k

� + i�
−

1

� − 	nq
� + 	

n�q+k

� − i�� .

�22�

The rational expression in the brackets complicates a direct
summation over the Brillouin zone. It is more convenient to
consider the representation �Im P�IJ�k ,�� of the imaginary
part Im P�r ,r� ;�� first, which is obtained by replacing ex-
pressions of the form 1 / �a� i�� by ����a�. This simplifies
the BZ summation significantly. Afterwards a Hilbert trans-
formation yields the full polarization matrix PIJ�k ,��, where
the frequency argument may be complex. In particular, this
allows an evaluation on the imaginary-frequency axis, where
the frequency-dependent quantities show a smooth behavior
and can therefore be sampled and interpolated with few fre-
quency points. As the bracket in Eq. �22� is real for frequen-
cies on the imaginary axis, the corresponding matrix
PIJ�k , i�� with ��R becomes Hermitian; it even becomes
real symmetric if the system exhibits inversion symmetry
and we use a symmetrized MPB as described in Sec. III B.

In the MPB, the integral equations for the dielectric
function �Eq. �9�� and the screened interaction �Eq. �10�� turn
into simple matrix equations. The equations become
particularly simple if we perform a basis transformation
�MI

k�r��→ �E�
k�r�� that diagonalizes the Coulomb matrix. We

note that no approximation is involved at this stage. The new
normalized basis functions are necessarily orthogonal, and
we do not need a biorthogonal set. In this new basis, the
matrix equations become simple products,


���k,�� = ��� − 

v��k�P���k,��
v��k� , �23�

W���k,�� = 

v��k�
��

−1�k,��
v��k� �24�

with the eigenvalues v��k� of the Coulomb matrix �Eq. �21��.
Here we use a symmetrized definition of the dielectric matrix

���k ,�� that is Hermitian �or real symmetric in case of
inversion symmetry� for imaginary frequencies and remains
finite at the � point. It is easy to verify that the screened
interaction remains unchanged by this symmetrized formula-
tion.

In contrast to the exchange self-energy, the frequency in-
tegral in Eq. �13� cannot be replaced by a sum over
residues because the positions of the poles of W��

c �k ,��
=W���k ,��−���v��k� in the complex-frequency plane are
unknown. Therefore, the correlation self-energy,

�
nq
� ��c

�����
nq
� 	 =

i

2�
�
k

BZ

�
n�

all

�
�,�

�

n�q+k

� �
nq
� E�

k	

��E�
k
nq

� �

n�q+k

� 	

� �
−�

�

d��
W��

c �k,���

� + �� − 	
n�q+k

� + i� sgn�	
n�q+k

� �

�25�

still contains an explicit integration over frequencies. Unfor-
tunately, the integrand has a lot of structure along the real
frequency axis, which makes a direct evaluation difficult.
There are two methods that avoid the integration over real
frequencies and use the imaginary axis instead: analytic
continuation29 and contour integration.30 The former allows a
faster and easier implementation but contains a badly con-
trolled fitting procedure, which can be tested with the more
accurate contour-integration method. We have implemented
both algorithms and find that they give similar results for the
systems considered here. In the following, we hence focus
exclusively on the first approach, which is based on an ana-
lytic continuation of Eq. �25� to the imaginary-frequency
axis,

�
nq
� ��c

��i���
nq
� 	 = −

1

2�
�
k

BZ

�
n�

all

�
�,�

�

n�q+k

� �
nq
� E�

k	

��E�
k
nq

� �

n�q+k

� 	

� �
−�

�

d��
W��

c �k,i���

i� + i�� − 	
n�q+k

� . �26�

The integration contour can be closed over the positive
imaginary and negative real half plane in Eqs. �25� and �26�,
respectively, and encloses the same poles. Now the fre-
quency integration is along the imaginary-frequency axis,
where the integrand is much smoother. In practice, we use a
discrete and finite mesh for the imaginary frequencies, which
is dense near �=0. A tail is fitted to the last mesh point
according to the known asymptotic �−2 behavior of the
screened interaction. Between the mesh points, we interpo-
late W��

c �k ,����� with cubic splines, where ����=� / �1−��
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maps the interval �0,1� to �0,��. This allows a stepwise ana-
lytic integration. With this procedure only a small number of
mesh points is needed, typically around 10.

Once the correlation self-energy is calculated on the dis-
crete imaginary-frequency mesh, we analytically continue it
to the whole complex plane by fitting the model function,

f��� = �
p=1

Np
ap

� − �p

for Re � � 0 �27�

with complex fit parameters ap and �p. Due to the location of
the poles of the correlation self-energy in the complex
plane—above the real axis for Re ��0 and below the real
axis for Re ��0—one must analytically continue from the
positive imaginary axis to the positive real axis. For symme-
try reasons one then obtains

f��� = �
p=1

Np ap
�

� − �p
�

for Re � � 0 �28�

on the negative real axis. In principle, Np is a convergence
parameter. However, as the number of imaginary frequencies
where �
nq

� ��c
��i���
nq

� 	 is known is relatively small, and as
the fitting procedure quickly becomes prohibitive for large
numbers of fit parameters, one usually uses only few poles,
e.g., Np=3. After finding the parameters ap and �p, the cor-
relation self-energy �
nq

� ��c
�����
nq

� 	 is approximated by the
analytic function f���, which allows to solve the nonlinear
quasiparticle equation �4� to machine precision with the stan-
dard iterative Newton method and without any additional
linearization of the self-energy.

D. Brillouin-zone sampling

Both the polarization function and the self-energy are de-
fined as products in real space. These become the convolu-
tions �Eqs. �19�, �22�, and �25�� in a reciprocal-space formu-
lation, which is better suited for infinite periodic systems
because all nonlocal quantities then become block diagonal.
We employ the tetrahedron method for summations over the
BZ.31

These equations do not only contain the two Bloch vec-
tors k and q but also their sum k+q, at which the KS wave
functions and energies must be known. Therefore, we choose
the set of k points kn1n2n3

=�i=1
3 nibi /Ni with ni=0, . . . ,Ni−1

and the reciprocal basis vectors bi. We denote the number of
k points by Nk=N1N2N3. It naturally includes the point
k=0, which is special because the long-range nature of the
Coulomb interaction makes the Coulomb matrix vIJ�k� and
also the screened interaction W���k ,�� diverge in the limit
k→0. This divergence must be taken into account in order to
obtain fast convergence with respect to the k-point sampling.
We will discuss a numerically stable and efficient treatment
in the next section.

E. �-point treatment

The exchange and correlation self-energy contributions in
Eqs. �19� and �26� each contain a sum over the BZ. The
interaction potentials vIJ�k� and W���k ,�� diverge in the

limit k→0 but as this pole is only of second order �1 /k2�, a
proper three-dimensional integration over k=0 will yield a
finite value.

Likewise, the calculation of the dielectric matrix �Eq.
�23�� involves a product of the polarization function and the
divergent Coulomb matrix. However, a closer inspection of
the polarization matrix �Eq. �22�� in the basis �E�

k�r�� shows
that the head element P11�k ,�� and the wing elements
P�1�k ,�� and P1��k ,�� with ��1 are of the order k2 and k,
respectively, so that the dielectric matrix 
�k ,�� remains fi-
nite but angular dependent at k=0.32

In any case, the divergence gives an important contribu-
tion to the self-energies and response functions and must be
treated with care. There are several numerical approaches.
Kotani and van Schilfgaarde12 replaced the � point by three
additional points k0 nearby, the so-called offset � points.
These might be reduced by symmetry, e.g., to a single point
in the case of cubic symmetry. However, because of the sum-
mations in Eqs. �19�, �22�, and �26�, each additional point k0

requires a complete auxiliary mesh �k0+q ,q�BZ� on which
the KS Hamiltonian must be diagonalized and the resulting
wave functions and energies must be stored. This at least
doubles the k-point set, thus increasing the numerical cost in
terms of computation time and memory demand. In another
approach, Ku and Eguiluz10 as well as Puschnig and
Ambrosch-Draxl19 used a plane-wave basis for the Coulomb
potential and related propagators and thereby departed from
a complete all-electron description because plane waves are
too inflexible to resolve the rapid variations in the wave
functions close to the atomic cores without a prohibitively
large basis set.

Here we present a scheme that does not require additional
k points or projections onto plane waves. It thus combines
the accuracy of an all-electron approach with the numerical
efficiency of a minimal k-point set. In the following, we
present the algorithm for the two self-energy contributions
and the dielectric matrix.

1. Exchange self-energy

If the k-point summation in Eq. �19� is replaced by an
integral, we can smoothly integrate over the divergence of
vIJ�k� and obtain a finite value. To this end, we formally
consider the Fourier transform

vGG�
�k� =

1

V
� e−i�k+G�·rei�k+G��·r�

�r − r��
d3rd3r� =

4�

k2 �G0�G�0

+ vGG�
� �k� �29�

with the nondivergent and infinitely large matrix
v

GG�
� �k�= �1−�G0��GG�

4� / �k+G�2. In a previous
publication,20 we found an analogous exact decomposition of
the Coulomb matrix �Eq. �21�� into the same divergent term
and a nondivergent remainder vIJ� �0�. Thus no projection onto
plane waves is necessary, and we retain the full accuracy of
our all-electron formulation. Replacing vGG� �0� by vIJ� �0� and
inserting Eq. �29� into Eq. �19� leads to contributions from
the divergent term
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�
nq
� ��x

��
nq
� 	div = −

4�fnq
�

V

 V

8�3�
BZ

1

k2d3k − �
k�0

BZ
1

k2�
�30�

with the occupation numbers fnq
� and from the nondivergent

term

�
nq
� ��x

��
nq
� 	ndiv = − �

k

BZ

�
n�

occ

�
I,J

vIJ�k��M̃J
k
nq

� �

n�q+k

� 	

� �

n�q+k

� �
nq
� M̃I

k	 , �31�

where we have set vIJ� �0�→vIJ�0� for simplicity. The diver-
gence of the Coulomb matrix is restricted to the first term of
Eq. �29�, and the corresponding eigenfunction is eik·r

/
V,
whose k→0 limit, a constant function, can be represented
exactly by the MPB. The products of 1 /k2 with higher-order
terms of the projections �eik·r
nq

� �

n�q+k

� 	 /
V can be of ze-
roth order and then lead to additional contributions to Eq.
�31� for k=0. Therefore, the projections must be expanded
with the help of k ·p perturbation theory. We have found that
these corrections improve the k-point convergence signifi-
cantly in some cases while in others—especially for small
band-gap semiconductors like GaAs—they worsen the con-
vergence. The behavior also depends on the particular elec-
tronic state �
nq

� 	. For simplicity, we defer an in-depth dis-
cussion to a later publication.

In order to be able to integrate analytically, we extend the
BZ integral in Eq. �30� to the whole reciprocal space by
replacing 1 /k2 with

F�k� = �
G

e−��k + G�2

�k + G�2
. �32�

Note that F�k� diverges at every reciprocal-lattice vector G.
The exponential function was included to ensure the conver-
gence of the sum everywhere else. This function is formally
identical to the one used by Massidda et al. in Ref. 33. How-
ever, these authors define � as a parameter depending on the
BZ size. Instead, we choose � to be as small as possible
�while still allowing a sufficiently fast converging sum over
G�, independently of the BZ. First, this ensures that supercell
calculations of the same system yield identical values. Sec-
ond, zero-order terms arising from products of the exponen-
tial function with 1 /k2 are small and can be neglected. After
replacing 1 /k2 with F�k� and extending the integral and sum-
mation over the whole reciprocal space we obtain

�
nq
� ��x

��
nq
� 	div

= − 4�fnq
� 
 1

8�3� e−�q2

q2 d3q −
1

�Nk
�

0��q�

e−�q2

q2 � ,

�33�

where the sum runs over all vectors q=k+G�0 and � is
the unit-cell volume. As both terms diverge for �→0, we
introduce a cutoff radius q0 and finally obtain

�
nq
� ��x

��
nq
� 	div

= − fnq
� � 1


��
erf�
�q0� −

4�

�Nk
�

0��q��q0

e−�q2

q2 � .

�34�

We get rid of q0 as a convergence parameter by choosing

e−�q0
2
=� as a cutoff criterion for the summation. In practice,

we find that �=0.005 is typically small enough.

2. Response functions

The treatment of the polarization and dielectric function
in the limit k→0 is simplified considerably by the basis
transformation �MI

k�r��→ �E�
k�r�� introduced in Sec. III C

because it confines the divergence of the Coulomb matrix to
a single eigenvalue v1�k��4� /k2 �Ref. 20�. The correspond-
ing eigenfunction E1

k�r��eik·r
/
V is known analytically.

Let us consider the projection �Eq. �20��, where the MPB
function is replaced by this eigenfunction. Because of the
orthogonality of the wave functions, we have
�eik·r
nq

� �

n�q+k

� 	��nn�
in the limit k→0. For the moment,

we restrict ourselves to the case of semiconductors and insu-
lators where the band indices n for occupied and n� for un-
occupied states always differ such that in leading order
�eik·r
nq

� �

n�q+k

� 	�k. The linear order in k exactly cancels
the singularity of the Coulomb matrix in the dielectric func-
tion �Eq. �23�� and can be calculated with k ·p perturbation
theory,32 which allows a full treatment of the divergence and
the dielectric anisotropy at k=0.34 In this way, the matrices
decompose into head, wings, and body as in a simple plane-
wave basis set. Still, the all-electron accuracy is fully re-
tained and no projection onto plane waves is necessary.

For the sake of completeness here, we give the exact ex-
pressions for the polarization function and the screened in-
teraction, taking into account the full anisotropy. From k ·p
perturbation theory, one obtains the form

P���k,i�� ��
ek

TH���ekk2 ek
Ts2���k ¯ ek

Tsn���k

ek
Ts2

����k P̃22��� ¯ P̃2n���

] ] � ]

ek
Tsn

����k P̃n2��� ¯ P̃nn���
�
�35�

for the polarization function in the limit k→0. Here H��� is
a 3�3 matrix, s���� are three-dimensional vectors, and the

matrix elements P̃����� are finite. We note that for frequency
arguments that are not purely imaginary the matrix P���k ,��
is not Hermitian; in particular, the horizontal and vertical
wings are then not simply the complex conjugates of one
another. Otherwise, the formalism is very similar to the one
given here. The corresponding screened interaction becomes

EFFICIENT IMPLEMENTATION OF THE GW… PHYSICAL REVIEW B 81, 125102 �2010�

125102-7



W���k,i�� ��
0 0 ¯ 0

0 W̃22��� ¯ W̃2n���

] ] � ]

0 W̃n2��� ¯ W̃nn���
� +

1

ek
TL���ek�

4�/k2 ek
Tw2���/k ¯ ek

Twn���/k

ek
Tw2

����/k �ek
Tw2����2 ¯ �ek

Tw2
������ek

Twn����

] ] � ]

ek
Twn

����/k �ek
Twn

������ek
Tw2���� ¯ �ek

Twn����2
�
�36�

with the finite matrix elements

W̃����� = 

v��0�
̃��

−1���
v��0� , �37�


̃����� = ��� − 

v��0�P̃�����
v��0� , �38�

where � ,��2. The divergent and, in general, angular-
dependent second term derives from the head and wing ele-
ments of Eq. �35� with

w���� = 
4��
��2

	̃��
−1���s����
v��0� �39�

and

L��� = 1 – 4�H��� − 
4� �
��2

s����w�
T���
v��0� .

�40�

Let us now turn to the case of a metallic system, where in
addition to the interband transitions with n�n�, there is a
contribution from intraband transitions across the Fermi sur-
face. These transitions occur within one electron band, i.e.,
n=n�, in which case the projection above becomes unity in
the limit k→0. However, it can be shown35 that the expres-
sion in the brackets of Eq. �22� will then be of linear order in
k and that we obtain a contribution only for the head element
of the polarization matrix, the so-called Drude term

P11
D �k,i�� � −

k2

4�

�pl
2

��� + i��
, �41�

where �pl is the plasma frequency obtained by an integration
over the Fermi surface. The Drude term gives rise to a con-
tribution �pl

2
/ ����+ i��� for the head element of the dielec-

tric matrix �Eq. �23��, which will mix with all other elements
in the inversion for the screened interaction �Eq. �24��. How-
ever, we find that W11

c �k ,�� is dominated by the bare Drude
term

W11
c,D�k,i�� � −

4�

k2

�pl
2

�2 + �pl
2 �42�

in the limit k→0. As this expression can be convoluted
with the Green function in Eq. �26� analytically, we
subtract it from the head element and treat the remainder
W11

c �k , i��−W11
c,D�k , i�� �k→0 numerically. The treatment of

the 1 /k2 divergence is explained in the next section.

3. Correlation self-energy

The BZ summation over the 1 /k2 divergence in the cor-
relation self-energy �Eq. �25�� can be treated with the same
procedure as outlined in Sec. III E 1 for the exchange self-
energy. However, in this case, there are additional 1 /k terms,
and all divergent terms exhibit an additional angular depen-
dence.

As a first step we describe this angular dependence with
the help of spherical harmonics. For example, for the head
element we must find the coefficients K�2l�m��� in

4�

ek
TL���ek

= �
l=0

�

�
m=−2l

2l

K�2l�m���Y�2l�m�ek� . �43�

If we multiply with the denominator ek
TL���ek

=�l=0
1 �m=−l

l L�2l�m���Y�2l�m
� �ek�, use the Gaunt coefficients and

the orthogonality of spherical harmonics, we obtain an infi-
nite system of linear equations, from which the coefficients
K�2l�m��� can be deduced. The corresponding expansions for
the wing,

ek
Tw����

ek
TL���ek

= �
l=0

�

�
m=−�2l+1�

2l+1

K�,�2l+1�m���Y�2l+1�m�ek� �44�

and body matrix elements can be calculated in a similar
way. Finally, subtraction of ���v��0� with v1�0��4� /k2

yields the expansions for the head and body of Wc.

Then K�2l�m
c ���=K�2l�m���− �4��3/2�l0 and W̃��

c ���
=W̃�����−���v��0� replace K�2l�m��� and W̃�����,
respectively.

The body matrix elements of the second term in Eq. �36�
are angular dependent but finite. Then all terms with l�0
integrate to zero, and we retain only the constant term l=0,

which we simply add to W̃��
c . The head �wing� elements

diverge with a factor k−2�k−1�. As in Sec. III E 1, multiplica-
tion with higher orders of the projections and the term
1 / �i�+ i��−	

n�q+k

� � leads to terms of zeroth order in k.
Again we do not discuss these terms explicitly, as they im-
prove the results only in some cases, while in others, they
can lead to numerical problems. This can be attributed to the
energy denominators of k ·p perturbation theory, which is
used to compute the higher-order terms.

The head element exhibits a 1 /k2 divergence, which can
be treated in the same way as in Sec. III E 1. We obtain a
contribution
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�
nq
� ��c

��i���
nq
� 	div = −

1

4�3/2V

 V

8�3�
BZ

1

k2d3k − �
k�0

BZ
1

k2�
� �

−�

� K00
c ����

i� + i�� − 	nq
� d��, �45�

where the frequency integration is performed as described in
Sec. III C. All other elements K�2l�m

c ��� as well as the diver-
gent wing elements of Eq. �36� need not be taken into ac-
count, as their angular parts integrate to zero. However, we
note that there is a finite contribution of these elements from
multiplications with higher-order terms of the other
quantities—a contribution that we neglect here for simplicity,
as previously mentioned.

F. Optimization of the MPB

If we assume that the eigenvalues v��k� are ordered ac-
cording to decreasing size, then matrix elements 
���k ,��
and W���k ,�� with large indices will be relatively small, cf.
Eqs. �23� and �24�. We may then introduce a threshold value
vmin for the eigenvalues and only retain the functions E�

k�r�
with v��k��vmin. As the eigenvalue v��k� can be viewed as
a measure for the importance of the corresponding function
E�

k�r� in v�r�, we restrict ourselves to the dominant part of
the electron-electron interaction in this way. The removal of
basis functions with small eigenvalues can be viewed as an
optimization step of the MPB because it reduces the matrix
sizes and hence the computational cost considerably without
compromising the accuracy, as we show in Sec. IV below.
We there also demonstrate that the results converge reason-
ably fast with respect to the threshold parameter vmin. Note
that with vmin=0, the full accuracy of the MPB is restored. In
our implementation, this optimization of the MPB only af-
fects the correlation self-energy while we always calculate
the exchange self-energy with the full MPB.

G. Use of symmetry

The evaluation of Eqs. �19�, �22�, and �26� takes consid-
erable computation time, which can be reduced substantially
by exploiting spatial and time-reversal symmetries of the
system, the latter in case of a system without inversion sym-
metry. Allowed symmetry operations are those that leave the
Hamiltonian invariant. With these operations, the set of k

vectors decomposes into groups of equivalent vectors, which
are equivalent in the sense that all elements of the group can
be generated by applying the symmetry operations to an ar-
bitrary representative of the group elements. As a conse-
quence, any physical quantity defined for the representative
k vector can be mapped to any other vector of the group by
a suitable symmetry operation. This reduces the full BZ sam-
pling to the smaller set of representative vectors, which form
the irreducible BZ �IBZ�.

We may thus restrict PIJ�k ,�� to k� IBZ. The summation
over q points in Eq. �22�, on the other hand, cannot be con-
fined in the same way because the terms to be summed also
depend on k �and q+k�. However, we can restrict the q

vectors to an extended IBZ �EIBZ�k�� that is defined in the

same way as the IBZ above but with the subset of symmetry
operations that leave the given k vector invariant.

Let us define the complete set of NA symmetry operations
by

SA = �Âi = �Ai,ai,�i��i = 1, . . . ,NA� , �46�

where Ai and ai denote the 3�3 rotation �or rotoinversion�
matrix and a translation vector �which is nonzero for non-
symmorphic operations�, respectively, and �i equals −1�+1�
for operations with �without� time reversal. The action of Âi

on a spatial vector r, a momentum vector k�BZ, and a
function f�r� is declared by

Âir = Air + ai, �47�

Âik = �iAik + G , �48�

Âif�r� = � f�A−1�r − ai�� for �i = 1

f��A−1�r − ai�� for �i = − 1,
� �49�

where the reciprocal-lattice vector G folds �iAik back into
the BZ. Furthermore, we define the subset

SA
k = �Âi

k�i = 1, . . . ,NA
k ;Âi

kk = k� � SA �50�

that generates the EIBZ�k�.
Now we reformulate Eq. �22� using the definition of the

EIBZ�k� and that Âi
nq
� �r� is a valid wave function with the

momentum vector Âiq,

PIJ�k,�� = �
i=1

NA
k

�
�

�
q

EIBZ�k�
Nq

k

NA
k �

n

occ

�
n�

unocc

�M̃I
kÂi

k−1

nq

� �Âi
k−1



n�q+k

� 	

� �Âi
k−1



n�q+k

� �Âi
k−1


nq
� M̃J

k	� . . . �

= �
i=1

NA
k

�
�

�
q

EIBZ�k�
Nq

k

NA
k �

n

occ

�
n�

unocc

T̂�i
��Âi

kM̃I
k
nq

� �

n�q+k

� 	

� �

n�q+k

� �
nq
� Âi

kM̃J
k	�� . . . � , �51�

where Nq
k is the number of equivalent q vectors with respect

to SA
k, T̂1 the identity, and T̂−1 the transpose operator

T̂−1BIJ=BJI. From the definition of the MPB, it is clear that

the application of an arbitrary symmetry operation Âi
k
�SA

k to
any MI

k�r� can be written as a linear combination of the basis
functions MJ

k�r�, such that the sum over the symmetry op-
erations in Eq. �51� can be performed at the very end after
summing over the bands, the EIBZ�k�, and the spins. We
note that this is also possible with the set �E�

k�r�� instead of
�MI

k�r��.
In a similar way, we can accelerate the evaluation of the

expectation values of �x
� and �c

����. To this end, we write
Eqs. �19� and �26� in a common general form with a function
f�r ,r��, which fulfills all symmetry properties of the system.
By confining the summation over k points to the EIBZ�q�
and summing over the symmetry operations we obtain
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�
nq
� ����
nq

� 	 = �
k

BZ

�
n�

� � d3rd3r�
nq
��

�r�

n�k

� �r�

n�k

��

�r��
nq
� �r��f�r,r��

= �
i=1

NA
q

�
k

EIBZ�q�
Nk

q

NA
q �

n�

� � d3rd3r�
nq
��

�r��Âi
q−1



n�k

� �r���Âi
q−1



n�k

��

�r���
nq
� �r��f�r,r��

= �
i=1

NA
q

�
k

EIBZ�q�
Nk

q

NA
q �

n�

� � d3rd3r��Âi
q
nq

��

�r��

n�k

� �r�

n�k

��

�r���Âi
q
nq

� �r���f�r,r��

= �
k

EIBZ�q�
Nk

q

NA
q �

m

�
m�


�
i=1

NA
q

Ai,mnq
��

A
i,m�nq

� ��
n�

� � d3rd3r�
mq
��

�r�

n�k

� �r�

n�k

��

�r��
m�q

� �r��f�r,r�� , �52�

where we have restricted ourselves for simplicity to symme-

try operations without time reversal. Ai,mnq
� = �
mq

� �Âi
q�
nq

� 	 is

the matrix representation of Âi
q in terms of the wave func-

tions. As Âi
q commutes with the Hamiltonian, the element

Ai,mnq
� can only be nonzero if the corresponding energies 	mq

�

and 	nq
� are identical. Let us assume that 
mq

� and 
nq
� lie in

the eigenspace formed by 
�q
� with n1���n2. By construc-

tion Ai,mnq
� is then an irreducible representation, and we may

apply the great orthogonality theorem of group theory,36

�
i=1

NA
q

Ai,mnq
��

A
i,m�nq

� =
NA

q

n2 − n1 + 1
�mm�

, �53�

which finally yields

�
nq
� ����
nq

� 	 = �
k

EIBZ�q�
Nk

q

n2 − n1 + 1
�

m=n1

n2

�
n�

� � d3rd3r�

�
mq
��

�r�

n�k

� �r�

n�k

��

�r��
mq
� �r��f�r,r�� .

�54�

The k-point sum is thus reduced to the EIBZ�q� but we have
to average over the degenerate states n1�m�n2. However,
the gain in computation time by a restriction to the EIBZ�q�
usually outweighs the overhead from the summation over the
degenerate states by far. For symmetry groups with time-
reversal symmetries, the derivation can be done analogously
with a more general great orthogonality theorem.36 The final
result is identical to Eq. �54�.

IV. TEST CALCULATIONS

We have implemented above algorithm in the computer
program SPEX. In the following, we first show detailed con-
vergence tests for Si and SrTiO3. Silicon is a prototype semi-
conductor, for which many GW calculations already exist
and which is therefore used as a benchmark material. Stron-
tium titanate is a prototype transition-metal oxide, which
crystallizes in the frequently occurring perovskite structure.
It is currently explored as a high-� dielectric and a promising

barrier material in spintronics and nanoelectronics. The va-
lence and the lowest conduction bands are formed by O 2p
and Ti 3d states, respectively. We explicitly include the semi-
core 3s and 3p states of Ti as well as the 4s and 4p states of
Sr with the help of local orbitals and take their contribution
to the screening into account. All these states are accurately
described by the FLAPW basis set. Additional local orbitals
are used to improve the description of high-lying unoccupied
states.24 As reference, we also show an overview of GW
results for a wide range of semiconductors including BaTiO3
and compare them with experimental and theoretical values
from the literature. Furthermore, the efficiency of our scheme
is illustrated by calculations for diamond supercells contain-
ing 16 and 128 atoms.

The numerical procedure involves a number of conver-
gence parameters, which determine the accuracy of convolu-
tions in real space �MPB�, reciprocal space �k-point set�, and
the frequency domain. Since the latter two apply to essen-
tially all electronic-structure methods, we concentrate mainly
on the parameters for the MPB here. Specifically, we con-
sider the cutoff parameters Lmax for the angular momentum
inside the MT spheres and Gmax� for the IPWs as well as the
threshold vmin for the optimization of the MPB according to
Sec. III F. We also discuss the convergence with respect to
the number of unoccupied states for the summations in Eqs.
�22� and �26�. All calculations are done with a
4�4�4 k-point set and the local-density approximation
�LDA� �Ref. 37� for the exchange-correlation functional at
the DFT level.

The MPB is designed as a basis for the products of the
wave functions �Eq. �14��, for which MT functions with an-
gular momenta as large as lmax=8 or even larger are typically
taken into account. As a consequence, an exact representa-
tion of the products inside the spheres requires spherical har-
monics at least up to 2lmax. However, the high angular mo-
menta in the original FLAPW basis are mostly needed to
ensure an accurate matching to the IPWs and contribute little
to the actual wave functions. In fact, we find that the cutoff
parameter Lmax for the MPB can be chosen much smaller
than 2lmax and, indeed, even smaller than lmax. Figure 1
shows the convergence of the quasiparticle transitions
�25�v→�15c and �25�v→X1c in �a� Si as well as
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�15v→�25�c and R15�v→�25�c in �b� SrTiO3 with respect to
Lmax. Convergence to within 0.01 eV is already attained with
Lmax=5 for Si and Lmax=4 for SrTiO3. With these cutoff
values, the MPB contains 292 and 853 MT functions, respec-
tively.

A similar statement can be made about the convergence
parameter Gmax� for the IPWs. Although an exact representa-
tion requires twice the wave-function cutoff Gmax, which we
choose as 3.6 bohr−1 for Si and 4.3 bohr−1 for SrTiO3 �giv-
ing rise to around 200 and 550 augmented plane waves, re-
spectively�, again a much smaller cutoff parameter is suffi-
cient for the products. Figure 2 confirms that convergence to
within 0.01 eV is achieved with Gmax� =2.7 bohr−1 and
Gmax� =3.2 bohr−1 for Si and SrTiO3, respectively, which
yield around 100 and 250 IPWs in the MPB. In general, we
find that the ratio Gmax� /Gmax�0.75 can be used as a rule of
thumb and works well for all materials considered here.

In Fig. 3, we show the convergence of the gap energies of
Si and SrTiO3 with respect to the threshold value vmin de-
fined in Sec. III F. If the MPB was complete, the eigenvalues
of the Coulomb matrix would be given by the Fourier trans-
form vG�k�=4� / �k+G�2. With this in mind, the threshold
value can be reformulated in terms of a cutoff in reciprocal
space �k+G��
4� /vmin, very similar to that for the IPWs
discussed above. Therefore, it is reasonable to show the con-
vergence in terms of this cutoff value, even though the MPB
is only complete in the subspace spanned by the wave-
function products, of course, and the Fourier transform vG�k�
is hence only an estimate for the eigenvalues.

Figure 3�a� shows the convergence of the quasiparticle
transitions for Si with respect to 
4� /vmin. We observe that
the values are converged to within 0.01 eV around
3.5 bohr−1, which corresponds to vmin=1.9 ha. With these
values the rank of the matrix W �see Fig. 4� is reduced from
392 �the full MPB� to around 75 and the computation time
from 140 to 42 s on an Intel Xeon �2.66 GHz, 4 MB cache�
work station. Interestingly, the curve of the indirect transition
in Fig. 3�a� exhibits a sudden step between 5.25 and
5.5 bohr−1, where the gap energy changes by 4 meV. A simi-
lar but much smaller step of 0.7 meV can also be observed in
the direct transition. Noting the simplified estimates vG�k�
for the eigenvalues, this can be attributed to a shell of recip-
rocal vectors with length �k+G� that enter between the radii
5.25 and 5.5 bohr−1 and give a sizable contribution. Al-
though simplified, this is the correct picture because the true
set of eigenvalues v��k� usually contains many groups of
degenerate eigenvalues, especially at high-symmetry points
k in the BZ. By analogy, these groups can be viewed as
shells of k+G vectors in reciprocal space.

In SrTiO3, the gap energies converge somewhat less
smoothly but systematically. From Fig. 3�b�, we see that after
5.3 bohr−1 the energies change by less than 0.01 eV. We note
that the convergence criterion of 0.01 eV is quite ambitious
for GW calculations. If we relax this criterion to, e.g., 0.05
eV, which should be sufficient for most studies, considerably
smaller cutoffs suffice.

Equations �22� and �26� involve a summation over the
unoccupied states 


n�q+k

� �r�. In practice, we must truncate
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this sum at some maximal band index N�. It is well known
that a proper convergence of the GW quasiparticle energies
requires very many unoccupied states.24,38 While for SrTiO3,
a relatively modest number of 200 states is sufficient, the
band gaps of Si, in particular, the indirect one, are more
difficult to converge. Recently, Bruneval and Gonze39 pro-
posed an approximate scheme that corrects for the neglect of
the states with indices n��N� and only involves the states
with n��N�. They showed that this extrapolar correction
reduces the number of states needed for convergence consid-
erably with only a small computational overhead. In short,
all states n��N� are placed on a fixed energy above all oth-
ers, which allows to take the energy denominator of Eqs.

�22� and �26� out of the sum over n� and to use the complete-
ness relation for the one-particle states 


n�q+k

� �r�. The final
expression can then be evaluated only with the states
n��N�. We have implemented this scheme in an all-electron
code. Contrary to Ref. 39, we do not employ a plasmon-pole
model, though, but use the full matrix of the screened inter-
action in the correction. As shown in Fig. 5, we find a con-
siderably improved convergence with respect to the number
of bands, too. The fixed energy for the bands n��N� is
placed 16 Ry �217.7 eV� above the maximal energy of the
bands n��N�. However, all other results in this paper were
obtained with the conventional summation. We note that the
LAPW basis is a relatively small and accurate basis for the
occupied states. In order to get enough unoccupied states for
GW calculations, it is therefore often necessary to extend the
LAPW basis by increasing the reciprocal cutoff radius Gmax

and introducing additional local orbitals.
For reference, we list the fundamental LDA and GW band

gaps for a variety of semiconductors and insulators in Table
I, together with experimental and other theoretical values for
comparison. The latter are calculated with the LMTO �Ref.
12� and the PAW method �Ref. 40�. Our own results for the
fundamental band gaps are converged to within 0.01 eV with
respect to the numerical parameters, including the BZ sam-
pling. We find that an accurate description of high-lying un-
occupied states with additional local orbitals is crucial for
properly converged GW results. The core states can also
have a sizable effect on electron correlation and the resulting
band gaps. For example, inclusion of the cation 2s and 2p

states of MgO and NaCl changes their band gaps by as much
as 0.2 eV. Semicore states �e.g., Mg 2p� are described with
local orbitals while deeper core states �e.g., Mg 2s� are
treated as dispersionless bands, whose wave functions are
confined to the MT spheres. Overall our LDA and GW values
agree very well with those of Ref. 40 but somewhat less so
with the older Ref. 12. As expected, the LDA considerably
underestimates the band gaps. The GW self-energy corrects
this underestimation in such a way that the results come very
close to the measured values. However, there is still a slight
underestimation in most cases. It has been suggested that a
self-consistent scheme could improve the GW values
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further.40,51 The starting point is then optimized in such a
way that the resulting one-particle orbitals are as close as
possible to the quasiparticle wave functions; in particular,
closer than those from standard local or semilocal function-
als. In this way, the first-order perturbative correction �Eq.
�4��, where the quasiparticle wave functions are approxi-
mated by the one-particle orbitals, is better justified. How-
ever, self-consistent GW calculations are computationally
very expensive. When compared with the electronic self-
energy, the most obvious source of errors in the local and
semilocal DFT functionals is the missing self-interaction cor-
rection, which influences the shape of the KS wave func-
tions. Therefore, better results might alternatively be ob-
tained if one uses a functional that treats electronic exchange
more accurately, e.g., the exact exchange functional within
the optimized-effective-potential method or hybrid
functionals.52,53 These approaches go beyond the scope of
the present paper. Nevertheless, we note that the numerical
procedure for the GW approximation presented here is inde-
pendent of the starting point and could also be applied within
a self-consistent scheme or to functionals containing an exact
exchange term.

As the GW approximation contains the exact exchange
self-energy, it does not suffer from the unphysical self-
interaction error present in local-density functionals such as
the LDA. Localized states are most strongly affected by this
error and appear too high in energy within the LDA. Thus,

the absence of the self-interaction error in the GW approxi-
mation should lead to an improved description of these
states. In fact, the quasiparticle levels of the localized Ga and
As 3d semicore states in gallium arsenide lie 2.1 and 3.1 eV
deeper than their LDA counterparts. Their theoretical binding
energies are 16.9 and 38.4 eV, respectively, which still un-
derestimates the experimental values of 18.82 and 40.76 eV
from x-ray photoemission spectroscopy.54 It has been shown
that self-consistent calculations can further improve the
d-band positions.40,51

In Fig. 6, we show the local-spin-density approximation
�LSDA� �Ref. 37� and GW band structures for ferromagnetic
Ni. The self-energy correction was calculated with a
8�8�8 sampling of the BZ. Convergence was tested with a
10�10�10 set. While for the semiconductors and insulators
treated so far a model function �Eq. �27�� for the correlation
self-energy with three poles, i.e., Np=3, was sufficient, we
must use a five-pole function in the case of Ni to reproduce
the values that we get from the reference contour-integration
method. A comparison of the LSDA and GW band structures
shows that the self-energy correction is strongly state and k

dependent whereas in the case of materials with a band gap,
the quasiparticle shifts are more or less uniform over the BZ
but different for occupied and unoccupied states. The GW

quasiparticle correction reduces the occupied d-band width
from about 4.0 eV in the LSDA to 3.2 eV, which is in accor-
dance with x-ray photoemission experiments.55 On the other
hand, the exchange splitting is hardly improved. There is
only a slight reduction, which cannot account for the large
overestimation within LSDA. The reason for this shortcom-
ing is that the GW self-energy lacks two-particle vertex cor-
rections, which give rise to spin-dependent screening and
thus to a different correction for spin-up and spin-down
states. Furthermore, the 6 eV satellite, which originates from
a virtual bound two-hole excitation, cannot be described
within the GW approximation for the same reason. Our GW

band structure compares very well with an early work within
the LAPW method9 but less well with a more recent LMTO
calculation.56 About this discrepancy we can only speculate.
It might be attributed to a less accurate description of unoc-
cupied states within the LMTO basis or to the usage of the

TABLE I. Fundamental GW band gaps for a variety of semicon-
ductors and insulators compared with experimental and theoretical
values from the literature. We also indicate the LDA eigenvalue
gaps. All values are in electron volts.

LDA GW LDAa GWa LDAb GWb Expt.

Ge 0.02 0.75 −0.08 0.57 0.74c

Si 0.62 1.11 0.46 0.90 0.62 1.12 1.17d

GaAs 0.29 1.31 0.33 1.31 0.49 1.30 1.63d

CdS 1.17 2.18 1.14 2.06 2.58e

GaN 1.67 2.83 1.81 3.03 1.62 2.80 3.27f

SrTiO3 1.80 3.36 3.25g

BaTiO3 2.18 3.18 3.3h

CaSe 2.04 3.63 3.85i

C 4.15 5.62 4.11 5.49 4.12 5.50 5.48d

BN 4.35 6.20 4.45 6.10 5.97j

MgO 4.64 7.17 4.85 6.77 4.76 7.25 7.83k

NaCl 4.90 7.53 8.5l

aReference 12.
bReference 40.
cReference 41.
dReference 42.
eReference 43.
fReference 44.
gReference 45.
hReference 46.
iReference 47.
jReference 48.
kReference 49.
lReference 50.
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offset-� method in Ref. 56, in which the numerically impor-
tant region around the center of the BZ is treated only ap-
proximately.

In order to demonstrate the efficiency of the code, we
show the computational time for calculating quasiparticle
shifts for diamond in the conventional unit cell �1�1�1�
containing two atoms as well as in 2�2�2 and 4�4�4
supercell geometries containing 16 and 128 atoms, respec-
tively. We choose the parameters so that all three calculations
yield identical results. For example, the k mesh contains
4�4�4, 2�2�2, and 1�1�1 points, respectively. The
other parameters are determined to ensure convergence to
within 0.01 eV. The computation times on a single CPU are
given in Table II. While the calculation of the quasiparticle
shifts takes only 5 s for the conventional unit cell, even the
treatment of supercells containing 16 and 128 atoms only
consumes affordable 0.24 and 34.2 h of computation time,
respectively.

In the case of the conventional unit cell �1�1�1�, we
also demonstrate the efficiency gain achieved by exploiting
the symmetry according to Sec. III G and by using a thresh-
old parameter vmin as in Sec. III F. If symmetry is not used at
all, then the computation of the quasiparticle shifts takes
nearly 6 min. The diamond structure exhibits inversion sym-
metry �IS�, which allows to define the bare and screened
Coulomb matrices as real symmetric instead of complex Her-
mitian quantities after a symmetrization of the MT functions
as briefly described in Sec. III B �for more details, see Ref.
27�. This reduces the computation time roughly by a factor
of 2 �“Only IS”�. If we next calculate the screened interac-
tion only in the irreducible wedge of the BZ, i.e., at eight k

points instead of 64, the computation time goes down further
to 30 s �“Only IBZ”�. The gain is slightly less than a factor of
8 because the BZ summation in Eq. �25� must still be per-
formed with all 64 k points. We can only restrict this sum-
mation and the sum over q in Eq. �22� if we use the extended
IBZ �EIBZ� as explained in Sec. III G, which leads to further
time savings of a factor of 3. Compared to the first calcula-
tion, the usage of symmetry thus leads to a 32 times faster
execution without loss of accuracy. By introducing a thresh-
old parameter vmin=0.65 for the optimization of the MPB,
we can even reduce the computation time further to only 5 s,
gaining an overall factor of 70.

V. CONCLUSIONS

In this paper, we described an implementation of the GW
approximation for the electronic self-energy within the all-
electron full-potential linearized augmented-plane-wave
method.25 We employ a mixed product basis, which is spe-
cifically designed for the representation of wave-function
products and retains the full accuracy of the all-electron
framework. As all-electron GW calculations have so far been
prohibitive for large systems due to the computational cost,
we presented ways to speed up the calculations considerably
so that supercell calculations for defect systems, nanowires,
interface, or surface structures become feasible. As a demon-
stration, we showed that our computer code can treat 128
carbon atoms in a diamond supercell. This was achieved by
exploiting spatial and time-reversal symmetries in the evalu-
ation of the polarization function and the self-energy. Both
quantities exhibit a k dependence and also involve a BZ
summation. While we only need to consider k points in the
IBZ for the former, the latter can be restricted to an EIBZ,
which accelerates the code considerably. If the system exhib-
its inversion symmetry, a symmetrization of the MT part of
the mixed product basis leads to real symmetric instead of
complex Hermitian response matrices, which reduces the
CPU time and memory demand. Furthermore, for the corre-
lation part of the self-energy, we can apply an optimization
of the mixed product basis that involves a basis transforma-
tion to the eigenvectors of the Coulomb matrix. By neglect-
ing eigenvectors with eigenvalues below a certain threshold
value, we only retain the dominant part of the bare electron-
electron interaction. The threshold value then becomes a
convergence parameter. This optimization reduces the matrix
sizes of response quantities such as the screened interaction,
again giving rise to a speed up of the calculation. We note
that no further approximations such as plasmon-pole models
or a range separation of the interaction potential are intro-
duced, and the anisotropy of the screening at k=0 is fully
taken into account. The divergence of the bare and the
screened interaction potential in the limit k→0 is treated
analytically while zeroth-order correction terms are derived
with the help of k ·p perturbation theory. This procedure
gives rise to a fast k-point convergence, which is particularly
important for GW calculations.

We showed convergence tests for silicon and strontium
titanate as a prototype semiconductor and transition-metal
oxide, respectively, to illustrate the accuracy of the mixed
product basis and its optimization with a threshold value for
the Coulomb eigenvalues. The results already converge with
relatively modest parameters. For example, for the angular
momenta inside the MT spheres and the plane-wave repre-
sentation in the IR, cutoff values well below the exact limit
�i.e., twice the corresponding FLAPW cutoffs� are sufficient
for convergence of the gap energies to within 0.01 eV. In
fact, the cutoff values can even be chosen smaller than the
FLAPW cutoffs. For reference, we reported the fundamental
GW band gaps for a variety of semiconductors and insula-
tors. Our results are in good agreement with recent GW cal-
culations based on the PAW method and with experiments,
although there is a somewhat larger discrepancy with older
GW results obtained within the LMTO method. For ferro-

TABLE II. Computational time for the calculation of quasipar-
ticle shifts of diamond in the conventional �1�1�1� and supercell
�2�2�2 and 4�4�4� geometries. For the former we also show
corresponding timings without use of symmetry �“No”� and with
restricted use �“Only IS” and “Only IBZ”� as well as the effect of
the MPB optimization with a threshold value vmin.

Geometry Atoms k mesh Symmetry vmin CPU Time

1�1�1 2 4�4�4 No 5 min 52 s

Only IS 3 min 34 s

Only IBZ 30 s

Yes 11 s

Yes 0.65 5 s

2�2�2 16 2�2�2 Yes 0.65 14 min 15 s

4�4�4 128 1�1�1 Yes 0.65 34 h 11 min
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magnetic Ni, we find that the GW self-energy reduces the
d-band width from 4.0 to 3.2 eV in very good agreement
with experiment but hardly improves the overestimation of
the exchange splitting within LSDA. These results are in
accordance with previous calculations.

For simplicity, we have restricted ourselves to the non-
self-consistent approach. However, with the numerical pro-
cedure presented here we are prepared to follow Ref. 51 and
extend the method to the quasiparticle self-consistent
scheme. Within this approach, the full self-energy matrix in-
cluding off-diagonal elements is needed. The extension of

the numerical procedure developed in the present paper to
these elements is straightforward.
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