000902210 001__ 902210
000902210 005__ 20220930130330.0
000902210 0247_ $$2doi$$a10.1039/D0CY01666G
000902210 0247_ $$2ISSN$$a2044-4753
000902210 0247_ $$2ISSN$$a2044-4761
000902210 0247_ $$2Handle$$a2128/29487
000902210 0247_ $$2altmetric$$aaltmetric:115027961
000902210 0247_ $$2WOS$$aWOS:000714119900001
000902210 037__ $$aFZJ-2021-04098
000902210 082__ $$a540
000902210 1001_ $$0P:(DE-Juel1)168384$$aOeggl, Reinhard$$b0
000902210 245__ $$aContinuous enzymatic stirred tank reactor cascade with unconventional medium yielding high concentrations of (S)-2-hydroxyphenyl propanone and its derivatives
000902210 260__ $$aLondon$$bRSC Publ.$$c2021
000902210 3367_ $$2DRIVER$$aarticle
000902210 3367_ $$2DataCite$$aOutput Types/Journal article
000902210 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639652119_31592
000902210 3367_ $$2BibTeX$$aARTICLE
000902210 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902210 3367_ $$00$$2EndNote$$aJournal Article
000902210 520__ $$aThe implementation of biocatalysis in flow chemistry offers synergistic synthesis advantages in line with green chemistry principles. Yet, the conversion of high substrate concentrations is in many cases hindered by insolubility issues or substrate toxicity. Here, the continuous synthesis of (S)-2-hydroxyphenyl propanone (2-HPP) from inexpensive benzaldehyde and acetaldehyde in a methyl tert-butyl ether based organic reaction environment, namely micro-aqueous reaction system, has been established. Kinetic parameters of the applied whole cell catalyst were identified to design a continuous process for (S)-2-HPP synthesis. This revealed a necessity to distribute acetaldehyde over a spatial coordinate to remain below a toxic concentration threshold. Hence, three continuous stirred tank reactors (cSTR) were conjugated in a technical cascade with an additional influx of acetaldehyde into each unit. The catalytic behaviour of this reaction setup was described based on mass balances and a kinetic model. Enzyme deactivation was described by a novel staged model and compared to a simple generic model. The optimized continuous setup yielded 190 mM (S)-HPP with an ee > 98% over 8 h. The product was easily recovered from the organic reaction environment by crystallization with an isolated yield of 68% and a purity of >99%. Further, the substrate range of the applied catalyst Pseudomonas putida benzoylformate decarboxylase variant L461A was analysed. This revealed numerous halogenated, methoxylated and nitro-derivatives in ortho, meta, and para position, which can in principle be gained by the established process. As an example, the applied cSTR concept was transferred to p-methoxy benzaldehyde with good results even without further optimization.
000902210 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902210 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902210 7001_ $$0P:(DE-HGF)0$$aGlaser, Juliane$$b1
000902210 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2
000902210 7001_ $$0P:(DE-Juel1)144643$$aRother, Dörte$$b3$$eCorresponding author
000902210 773__ $$0PERI:(DE-600)2595090-3$$a10.1039/D0CY01666G$$gp. 10.1039.D0CY01666G$$n24$$p7886-7897$$tCatalysis science & technology$$v11$$x2044-4761$$y2021
000902210 8564_ $$uhttps://juser.fz-juelich.de/record/902210/files/d0cy01666g.pdf$$yOpenAccess
000902210 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000902210 909CO $$ooai:juser.fz-juelich.de:902210$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000902210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168384$$aForschungszentrum Jülich$$b0$$kFZJ
000902210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000902210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b3$$kFZJ
000902210 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902210 9141_ $$y2021
000902210 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCATAL SCI TECHNOL : 2019$$d2021-01-30
000902210 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000902210 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902210 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATAL SCI TECHNOL : 2019$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000902210 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000902210 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000902210 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000902210 9801_ $$aFullTexts
000902210 980__ $$ajournal
000902210 980__ $$aVDB
000902210 980__ $$aUNRESTRICTED
000902210 980__ $$aI:(DE-Juel1)IBG-1-20101118
000902210 980__ $$aAPC