001     902212
005     20220914192700.0
020 _ _ |a 978-1-7281-6251-5
024 7 _ |a 10.1109/BigData50022.2020.9378050
|2 doi
024 7 _ |a WOS:000662554700042
|2 WOS
024 7 _ |a 2128/31843
|2 Handle
037 _ _ |a FZJ-2021-04100
100 1 _ |a Götz, Markus
|0 P:(DE-Juel1)162390
|b 0
|e Corresponding author
111 2 _ |a 2020 IEEE International Conference on Big Data (Big Data)
|c Atlanta
|d 2020-12-10 - 2020-12-13
|w GA
245 _ _ |a HeAT – a Distributed and GPU-accelerated Tensor Framework for Data Analytics
260 _ _ |c 2020
|b IEEE
300 _ _ |a 276-287
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1663150071_25138
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a To cope with the rapid growth in available data, the efficiency of data analysis and machine learning libraries has recently received increased attention. Although great advancements have been made in traditional array-based computations, most are limited by the resources available on a single computation node. Consequently, novel approaches must be made to exploit distributed resources, e.g. distributed memory architectures. To this end, we introduce HeAT, an array-based numerical programming framework for large-scale parallel processing with an easy-to-use NumPy-like API. HeAT utilizes PyTorch as a node-local eager execution engine and distributes the workload on arbitrarily large high-performance computing systems via MPI. It provides both low-level array computations, as well as assorted higher-level algorithms. With HeAT, it is possible for a NumPy user to take full advantage of their available resources, significantly lowering the barrier to distributed data analysis. When compared to similar frameworks, HeAT achieves speedups of up to two orders of magnitude.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 1
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Debus, Charlotte
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Coquelin, Daniel
|0 P:(DE-Juel1)177671
|b 2
700 1 _ |a Krajsek, Kai
|0 P:(DE-Juel1)129347
|b 3
700 1 _ |a Comito, Claudia
|0 P:(DE-Juel1)174573
|b 4
700 1 _ |a Knechtges, Philipp
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hagemeier, Bjorn
|0 P:(DE-Juel1)132123
|b 6
700 1 _ |a Tarnawa, Michael
|0 P:(DE-Juel1)178977
|b 7
700 1 _ |a Hanselmann, Simon
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Siggel, Martin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Basermann, Achim
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Streit, Achim
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1109/BigData50022.2020.9378050
856 4 _ |u https://juser.fz-juelich.de/record/902212/files/2007.13552v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902212
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a KIT: Karlsruher Institut für Technologie
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)162390
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174573
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178977
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21