000902227 001__ 902227
000902227 005__ 20220930130330.0
000902227 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118695
000902227 0247_ $$2ISSN$$a1053-8119
000902227 0247_ $$2ISSN$$a1095-9572
000902227 0247_ $$2Handle$$a2128/28949
000902227 0247_ $$2pmid$$a34732326
000902227 0247_ $$2WOS$$aWOS:000719341600005
000902227 037__ $$aFZJ-2021-04113
000902227 082__ $$a610
000902227 1001_ $$0P:(DE-Juel1)179271$$aPierling, Anna L.$$b0$$eCorresponding author$$ufzj
000902227 245__ $$aCerebral A1 adenosine receptor availability in female and male participants and its relationship to sleep
000902227 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000902227 3367_ $$2DRIVER$$aarticle
000902227 3367_ $$2DataCite$$aOutput Types/Journal article
000902227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645540859_17118
000902227 3367_ $$2BibTeX$$aARTICLE
000902227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902227 3367_ $$00$$2EndNote$$aJournal Article
000902227 520__ $$aThe neuromodulator adenosine and its receptors are mediators of sleep-wake regulation which is known to differ between sexes. We, therefore, investigated sex differences in A1 adenosine receptor (A1AR) availability in healthy human subjects under well-rested conditions using [18F]CPFPX and positron emission tomography (PET). [18F]CPFPX PET scans were acquired in 50 healthy human participants (20 females; mean age ± SD 28.0 ± 5.3 years). Mean binding potential (BPND; Logan's reference tissue model with cerebellum as reference region) and volume of distribution (VT) values were calculated in 12 and 15 grey matter brain regions, respectively. [18F]CPFPX BPND was higher in females compared to males in all investigated brain regions (p < 0.025). The largest differences were found in the pallidum and anterior cingulate cortex, where mean BPND values were higher by 29% in females than in males. In females, sleep efficiency correlated positively and sleep latency negatively with BPND in most brain regions. VT values did not differ between sexes. Sleep efficiency correlated positively with VT in most brain regions in female participants. In conclusion, our analysis gives a first indication for potential sex differences in A1AR availability even under well-rested conditions. A1AR availability as measured by [18F]CPFPX BPND is higher in females compared to males. Considering the involvement of adenosine in sleep-wake control, this finding might partially explain the known sex differences in sleep efficiency and sleep latency
000902227 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000902227 536__ $$0G:(BMBF)01EW1808$$aSleepLess - Darstellung synaptischer Plastizität während therapeutischen Schlafentzugs in Depression (01EW1808)$$c01EW1808$$x1
000902227 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x2
000902227 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902227 7001_ $$0P:(DE-HGF)0$$aElmenhorst, Eva-Maria$$b1
000902227 7001_ $$0P:(DE-HGF)0$$aLange, Denise$$b2
000902227 7001_ $$0P:(DE-HGF)0$$aHennecke, Eva$$b3
000902227 7001_ $$0P:(DE-HGF)0$$aBaur, Diego M.$$b4
000902227 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b5$$ufzj
000902227 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b6$$ufzj
000902227 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7$$ufzj
000902227 7001_ $$0P:(DE-HGF)0$$aAeschbach, Daniel$$b8
000902227 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b9$$ufzj
000902227 7001_ $$0P:(DE-HGF)0$$aLandolt, Hans-Peter$$b10
000902227 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b11$$eCorresponding author$$ufzj
000902227 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118695$$gVol. 245, p. 118695 -$$p118695 -$$tNeuroImage$$v245$$x1053-8119$$y2021
000902227 8564_ $$uhttps://juser.fz-juelich.de/record/902227/files/Invoice_OAD0000158879.pdf
000902227 8564_ $$uhttps://juser.fz-juelich.de/record/902227/files/Pierling2021%20-%20Cerebral%20A1%20adenosine%20receptor%20availability%20in%20female%20and%20male%20participants%20and%20its%20relationship%20to%20sleep.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000902227 8564_ $$uhttps://juser.fz-juelich.de/record/902227/files/accepted%20Manuscript.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000902227 8767_ $$8OAD0000158879$$92021-11-04$$d2021-11-12$$eAPC$$jZahlung erfolgt$$zBelegnr.: 1200173301
000902227 909CO $$ooai:juser.fz-juelich.de:902227$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179271$$aForschungszentrum Jülich$$b0$$kFZJ
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b5$$kFZJ
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b6$$kFZJ
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b9$$kFZJ
000902227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b11$$kFZJ
000902227 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000902227 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000902227 9141_ $$y2021
000902227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000902227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902227 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902227 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902227 920__ $$lyes
000902227 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000902227 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000902227 980__ $$ajournal
000902227 980__ $$aVDB
000902227 980__ $$aI:(DE-Juel1)INM-2-20090406
000902227 980__ $$aI:(DE-Juel1)INM-5-20090406
000902227 980__ $$aAPC
000902227 980__ $$aUNRESTRICTED
000902227 9801_ $$aAPC
000902227 9801_ $$aFullTexts