000902250 001__ 902250
000902250 005__ 20220930130330.0
000902250 0247_ $$2doi$$a10.1186/s13007-021-00732-7
000902250 0247_ $$2Handle$$a2128/29652
000902250 0247_ $$2altmetric$$aaltmetric:103403848
000902250 0247_ $$2pmid$$a33823898
000902250 0247_ $$2WOS$$aWOS:000637504700001
000902250 037__ $$aFZJ-2021-04120
000902250 041__ $$aEnglish
000902250 082__ $$a570
000902250 1001_ $$0P:(DE-HGF)0$$aMeixner, Marco$$b0
000902250 245__ $$aReduced spatial resolution MRI suffices to image and quantify drought induced embolism formation in trees
000902250 260__ $$aLondon$$bBioMed Central$$c2021
000902250 3367_ $$2DRIVER$$aarticle
000902250 3367_ $$2DataCite$$aOutput Types/Journal article
000902250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640771671_9288
000902250 3367_ $$2BibTeX$$aARTICLE
000902250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902250 3367_ $$00$$2EndNote$$aJournal Article
000902250 520__ $$aBackgroundMagnetic resonance imaging (MRI) is uniquely suited to non-invasively and continuously monitor embolism formation in trees. Depending on the MRI method used, quantitative parameter maps of water content and MRI signal relaxation behavior can be generated. The ability to measure dynamic differences in water content and relaxation behavior can be used to detect xylem embolism formation, even if xylem conduits are too small to be spatially resolved. This is especially advantageous when using affordable small-scale low-field MRI scanners. The amount of signal that can be obtained from an object strongly depends on the strength of the magnetic field of the imager’s magnet. Imaging at lower resolutions thus would allow to reduce the cost, size and weight of the MRI scanner and to shorten image acquisition times.ResultsWe investigated how much spatial resolution can be sacrificed without losing the ability to monitor embolism formation in coniferous softwood (spruce, Picea abies) and diffuse porous beech (Fagus sylvatica). Saplings of both species were bench dehydrated, while they were continuously imaged at stepwise decreasing spatial resolutions. Imaging was done by means of a small-scale MRI device, utilizing image matrix sizes of 128 × 128, 64 × 64 and 32 × 32 pixels at a constant FOV of 19 and 23 mm, respectively. While images at the lowest resolutions (pixel sizes 0.59 × 0.59 mm and 0.72 × 0.72 mm) were no longer sufficient to resolve finer details of the stem anatomy, they did permit an approximate localization of embolism formation and the generation of accurate vulnerability curves.ConclusionsWhen using MRI, spatial resolution can be sacrificed without losing the ability to visualize and quantify embolism formation. Imaging at lower spatial resolution to monitor embolism formation has two advantages. Firstly, the acquisition time per image can be reduced dramatically. This enables continuous imaging at high time resolution, which may be beneficial to monitor rapid dynamics of embolism formation. Secondly, if the requirements for spatial resolution are relaxed, much simpler MRI devices can be used. This has the potential to make non-invasive MR imaging of embolism formation much more affordable and more widely available.
000902250 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902250 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902250 7001_ $$0P:(DE-HGF)0$$aFoerst, Petra$$b1
000902250 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel W.$$b2$$eCorresponding author
000902250 773__ $$0PERI:(DE-600)2203723-8$$a10.1186/s13007-021-00732-7$$gVol. 17, no. 1, p. 38$$n1$$p38$$tPlant methods$$v17$$x1746-4811$$y2021
000902250 8564_ $$uhttps://juser.fz-juelich.de/record/902250/files/PDF.js%20viewer.pdf
000902250 8564_ $$uhttps://juser.fz-juelich.de/record/902250/files/s13007-021-00732-7.pdf$$yOpenAccess
000902250 8767_ $$8SN-2021-00640-b$$92021-10-27$$d2021-11-05$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200173122
000902250 909CO $$ooai:juser.fz-juelich.de:902250$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000902250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b2$$kFZJ
000902250 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902250 9141_ $$y2021
000902250 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT METHODS : 2019$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902250 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000902250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902250 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000902250 980__ $$ajournal
000902250 980__ $$aVDB
000902250 980__ $$aUNRESTRICTED
000902250 980__ $$aI:(DE-Juel1)IBG-2-20101118
000902250 980__ $$aAPC
000902250 9801_ $$aAPC
000902250 9801_ $$aFullTexts