000902278 001__ 902278
000902278 005__ 20240712101023.0
000902278 0247_ $$2doi$$a10.5194/acp-2020-1041
000902278 0247_ $$2Handle$$a2128/28929
000902278 0247_ $$2altmetric$$aaltmetric:93703261
000902278 037__ $$aFZJ-2021-04141
000902278 082__ $$a550
000902278 1001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b0$$eCorresponding author
000902278 245__ $$aOxidation of low-molecular weight organic compounds in cloud droplets: global impact on tropospheric oxidants
000902278 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000902278 3367_ $$2DRIVER$$aarticle
000902278 3367_ $$2DataCite$$aOutput Types/Journal article
000902278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636379092_21912
000902278 3367_ $$2BibTeX$$aARTICLE
000902278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902278 3367_ $$00$$2EndNote$$aJournal Article
000902278 520__ $$aIn liquid cloud droplets, superoxide anion (O−2(aq)) is known to quickly consume ozone (O3(aq)), which is relatively insoluble. The significance of this reaction as tropospheric O3 sink is sensitive to the abundance of O−2(aq) and therefore to the production of its main precursor, hydroperoxyl radical (HO2(aq)). The aqueous-phase oxidation of oxygenated volatile organic compounds (OVOCs) is the major source of HO2(aq) in cloud droplets. Hence, the lack of explicit aqueous-phase chemical kinetics in global atmospheric models leads to a general underestimation of clouds as O3 sinks. In this study, the importance of in-cloud OVOC oxidation for tropospheric composition is assessed by using the Chemistry As A Boxmodel Application (CAABA) and the global atmospheric model ECHAM/MESSy (EMAC), which are both capable of explicitly representing the relevant chemical transformations. For this analysis, three different in-cloud oxidation mechanisms are employed: (1) one including the basic oxidation of SO2(aq) via O3(aq) and H2O2(aq), which thus represents the capabilities of most global models, (2) the more advanced standard EMAC mechanism, which includes inorganic chemistry and simplified degradation of methane oxidation products, and (3) the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC). By using EMAC, the global impact of each mechanism is assessed focusing mainly on tropospheric volatile organic compounds (VOCs), HOx (HOx = OH+HO2), and O3. This is achieved by performing a detailed HOx and O3 budget analysis in the gas- and aqueous-phase. The resulting changes are evaluated against O3 and methanol (CH3OH) satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) for 2015. In general, the explicit in-cloud oxidation leads to an overall reduction of predicted OVOCs levels, and reduces EMAC's overestimation of some OVOCs in the tropics. The in-cloud OVOC oxidation shifts the HO2 production from the gas- to the aqueous-phase. As a result, the O3 budget is perturbed with scavenging being enhanced and the gas-phase chemical losses being reduced. With the simplified in-cloud chemistry, about 13 Tg a−1 of O3 are scavenged, which increases to 336 Tg a−1 when JAMOC is used. The highest O3 reduction of 12 % is predicted in the upper troposphere/lower stratosphere (UTLS). These changes in the free troposphere significantly reduce the modelled tropospheric ozone columns, which are known to be generally overestimated by EMAC and other global atmospheric models.
000902278 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902278 588__ $$aDataset connected to CrossRef
000902278 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b1
000902278 7001_ $$0P:(DE-Juel1)168550$$aFranco, Bruno$$b2
000902278 7001_ $$0P:(DE-HGF)0$$aWespes, Catherine$$b3
000902278 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b4
000902278 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5
000902278 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-1041$$p $$tAtmospheric chemistry and physics / Discussions$$v $$x1680-7367$$y2020
000902278 8564_ $$uhttps://juser.fz-juelich.de/record/902278/files/acp-2020-1041-1.pdf$$yOpenAccess
000902278 909CO $$ooai:juser.fz-juelich.de:902278$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b0$$kFZJ
000902278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180928$$aForschungszentrum Jülich$$b1$$kFZJ
000902278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b4$$kFZJ
000902278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
000902278 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902278 9141_ $$y2021
000902278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000902278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902278 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902278 9801_ $$aFullTexts
000902278 980__ $$ajournal
000902278 980__ $$aVDB
000902278 980__ $$aUNRESTRICTED
000902278 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902278 981__ $$aI:(DE-Juel1)ICE-3-20101013