000902279 001__ 902279
000902279 005__ 20240712101023.0
000902279 0247_ $$2doi$$a10.5194/acp-2020-1130
000902279 0247_ $$2Handle$$a2128/28923
000902279 0247_ $$2altmetric$$aaltmetric:94471508
000902279 037__ $$aFZJ-2021-04142
000902279 082__ $$a550
000902279 1001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b0$$eCorresponding author
000902279 245__ $$aOrganic pollutants from tropical peatland fires: regional influences and its impact on lower stratospheric ozone
000902279 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000902279 3367_ $$2DRIVER$$aarticle
000902279 3367_ $$2DataCite$$aOutput Types/Journal article
000902279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636377734_21912
000902279 3367_ $$2BibTeX$$aARTICLE
000902279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902279 3367_ $$00$$2EndNote$$aJournal Article
000902279 520__ $$aAbstract. The particularly strong dry season in Indonesia in 2015, caused by an exceptional strong El Niño, led to severe peatland fires resulting in high volatile organic compound (VOC) biomass burning emissions. At the same time, the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the intertropical convergence zone (ITCZ) efficiently transported the resulting primary and secondary pollutants to the upper troposphere/lower stratosphere (UTLS). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS, and we investigate the effect of in-cloud oxygenated VOC (OVOC) oxidation during such a strong pollution event. This is achieved by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). By comparing modelled columns of the biomass burning marker hydrogen cyanide (HCN) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI), we find that EMAC properly captures the exceptional strength of the Indonesian fires. In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This has a direct impact on the oxidation capacity, resulting in the largest regional reduction in hydroxyl radicals (OH) and nitrogen oxides (NOx). Even though an increase in ozone (O3) is predicted close to the peatland fires, particular high concentrations of phenols lead to an O3 depletion in eastern Indonesia. By employing the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened and that by ignoring these processes, global models tend to overestimate the impact of such extreme pollution events. In the ASMA and the ITCZ, the upward transport leads to elevated VOC concentrations in the UTLS region, which results in a depletion of lower stratospheric O3. We find that this is caused by a high destruction of O3 by phenoxy radicals and by the increased formation of NOx reservoir species, which dampen the chemical production of O3. The Indonesian peatland fires regularly occur during El Niño years and contribute to the depletion of O3. In the time period from 2001 to 2016, we find that the lower stratospheric O3 is reduced by about 0.38 DU and contributes to about 25 % to the lower stratospheric O3 reduction observed by remote sensing. By not considering these processes, global models might not be able to reproduce this variability in lower stratospheric O3.
000902279 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902279 588__ $$aDataset connected to CrossRef
000902279 7001_ $$0P:(DE-Juel1)168550$$aFranco, Bruno$$b1
000902279 7001_ $$00000-0002-8805-2141$$aClarisse, Lieven$$b2
000902279 7001_ $$0P:(DE-HGF)0$$aCoheur, Pierre-François$$b3
000902279 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b4
000902279 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5
000902279 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-1130$$p $$tAtmospheric chemistry and physics / Discussions$$v $$x1680-7367$$y2020
000902279 8564_ $$uhttps://juser.fz-juelich.de/record/902279/files/acp-2020-1130.pdf$$yOpenAccess
000902279 909CO $$ooai:juser.fz-juelich.de:902279$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b0$$kFZJ
000902279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b4$$kFZJ
000902279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
000902279 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902279 9141_ $$y2021
000902279 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902279 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000902279 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902279 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902279 9801_ $$aFullTexts
000902279 980__ $$ajournal
000902279 980__ $$aVDB
000902279 980__ $$aUNRESTRICTED
000902279 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902279 981__ $$aI:(DE-Juel1)ICE-3-20101013