000902281 001__ 902281
000902281 005__ 20240712101024.0
000902281 0247_ $$2doi$$a10.5194/acp-21-9909-2021
000902281 0247_ $$2ISSN$$a1680-7316
000902281 0247_ $$2ISSN$$a1680-7324
000902281 0247_ $$2Handle$$a2128/28931
000902281 0247_ $$2altmetric$$aaltmetric:108492652
000902281 0247_ $$2WOS$$aWOS:000670319200004
000902281 037__ $$aFZJ-2021-04144
000902281 082__ $$a550
000902281 1001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b0$$eCorresponding author
000902281 245__ $$aOxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants
000902281 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000902281 3367_ $$2DRIVER$$aarticle
000902281 3367_ $$2DataCite$$aOutput Types/Journal article
000902281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636381140_22372
000902281 3367_ $$2BibTeX$$aARTICLE
000902281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902281 3367_ $$00$$2EndNote$$aJournal Article
000902281 520__ $$aIn liquid cloud droplets, superoxide anion (O−2(aq)) is known to quickly consume ozone (O3(aq)), which is relatively insoluble. The significance of this reaction as a tropospheric O3 sink is sensitive to the abundance of O−2(aq) and therefore to the production of its main precursor, the hydroperoxyl radical (HO2(aq)). The aqueous-phase oxidation of oxygenated volatile organic compounds (OVOCs) is the major source of HO2(aq) in cloud droplets. Hence, the lack of explicit aqueous-phase chemical kinetics in global atmospheric models leads to a general underestimation of clouds as O3 sinks. In this study, the importance of in-cloud OVOC oxidation for tropospheric composition is assessed by using the Chemistry As A Boxmodel Application (CAABA) and the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model, which are both capable of explicitly representing the relevant chemical transformations. For this analysis, three different in-cloud oxidation mechanisms are employed: (1) one including the basic oxidation of SO2(aq) by O3(aq) and H2O2(aq), which thus represents the capabilities of most global models; (2) the more advanced standard EMAC mechanism, which includes inorganic chemistry and simplified degradation of methane oxidation products; and (3) the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC). By using EMAC, the global impact of each mechanism is assessed focusing mainly on tropospheric volatile organic compounds (VOCs), HOx (HOx=OH+HO2), and O3. This is achieved by performing a detailed HOx and O3 budget analysis in the gas and aqueous phase. The resulting changes are evaluated against O3 and methanol (CH3OH) satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) for 2015. In general, the explicit in-cloud oxidation leads to an overall reduction in predicted OVOC levels and reduces EMAC's overestimation of some OVOCs in the tropics. The in-cloud OVOC oxidation shifts the HO2 production from the gas to the aqueous phase. As a result, the O3 budget is perturbed with scavenging being enhanced and the gas-phase chemical losses being reduced. With the simplified in-cloud chemistry, about 13 Tg yr−1 of O3 is scavenged, which increases to 336 Tg yr−1 when JAMOC is used. The highest O3 reduction of 12 % is predicted in the upper troposphere–lower stratosphere (UTLS). These changes in the free troposphere significantly reduce the modelled tropospheric ozone columns, which are known to be generally overestimated by EMAC and other global atmospheric models.
000902281 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902281 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902281 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b1
000902281 7001_ $$0P:(DE-Juel1)168550$$aFranco, Bruno$$b2
000902281 7001_ $$0P:(DE-HGF)0$$aWespes, Catherine$$b3
000902281 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b4
000902281 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5
000902281 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-9909-2021$$gVol. 21, no. 12, p. 9909 - 9930$$n12$$p9909 - 9930$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000902281 8564_ $$uhttps://juser.fz-juelich.de/record/902281/files/acp-21-9909-2021.pdf$$yOpenAccess
000902281 909CO $$ooai:juser.fz-juelich.de:902281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b0$$kFZJ
000902281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180928$$aForschungszentrum Jülich$$b1$$kFZJ
000902281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b4$$kFZJ
000902281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
000902281 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902281 9141_ $$y2021
000902281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902281 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902281 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902281 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902281 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902281 9801_ $$aFullTexts
000902281 980__ $$ajournal
000902281 980__ $$aVDB
000902281 980__ $$aUNRESTRICTED
000902281 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902281 981__ $$aI:(DE-Juel1)ICE-3-20101013