000902282 001__ 902282
000902282 005__ 20240712101024.0
000902282 0247_ $$2doi$$a10.5194/gmd-14-4103-2021
000902282 0247_ $$2ISSN$$a1991-959X
000902282 0247_ $$2ISSN$$a1991-9603
000902282 0247_ $$2Handle$$a2128/28932
000902282 0247_ $$2altmetric$$aaltmetric:108492438
000902282 0247_ $$2WOS$$aWOS:000670319500003
000902282 037__ $$aFZJ-2021-04145
000902282 082__ $$a550
000902282 1001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b0$$eCorresponding author
000902282 245__ $$aOxidation of low-molecular-weight organic compounds in cloud droplets: development of the Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) in CAABA/MECCA (version 4.5.0)
000902282 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000902282 3367_ $$2DRIVER$$aarticle
000902282 3367_ $$2DataCite$$aOutput Types/Journal article
000902282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636381436_21912
000902282 3367_ $$2BibTeX$$aARTICLE
000902282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902282 3367_ $$00$$2EndNote$$aJournal Article
000902282 520__ $$aThe Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented in the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; version 4.5.0). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), suitable for global model applications. It is based on a subset of the comprehensive Cloud Explicit Physico-chemical Scheme (CLEPS; version 1.0). The phase transfer of species containing up to 10 carbon atoms is included, and a selection of species containing up to 4 carbon atoms reacts in the aqueous phase. In addition, the following main advances are implemented: (1) simulating hydration and dehydration explicitly; (2) taking oligomerisation of formaldehyde, glyoxal, and methylglyoxal into account; (3) adding further photolysis reactions; and (4) considering gas-phase oxidation of new outgassed species. The implementation of JAMOC in MECCA makes a detailed in-cloud OVOC oxidation model readily available for box as well as for regional and global simulations that are affordable with modern supercomputing facilities. The new mechanism is tested inside the box model Chemistry As A Boxmodel Application (CAABA), yielding reduced gas-phase concentrations of most oxidants and OVOCs except for the nitrogen oxides.
000902282 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902282 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902282 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b1
000902282 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b2
000902282 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b3
000902282 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-14-4103-2021$$gVol. 14, no. 6, p. 4103 - 4115$$n6$$p4103 - 4115$$tGeoscientific model development$$v14$$x1991-9603$$y2021
000902282 8564_ $$uhttps://juser.fz-juelich.de/record/902282/files/gmd-14-4103-2021.pdf$$yOpenAccess
000902282 909CO $$ooai:juser.fz-juelich.de:902282$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b0$$kFZJ
000902282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180928$$aForschungszentrum Jülich$$b1$$kFZJ
000902282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b2$$kFZJ
000902282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b3$$kFZJ
000902282 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902282 9141_ $$y2021
000902282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000902282 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902282 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000902282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000902282 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902282 9801_ $$aFullTexts
000902282 980__ $$ajournal
000902282 980__ $$aVDB
000902282 980__ $$aUNRESTRICTED
000902282 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902282 981__ $$aI:(DE-Juel1)ICE-3-20101013