000902286 001__ 902286
000902286 005__ 20240712101012.0
000902286 0247_ $$2doi$$a10.5194/amt-14-6759-2021
000902286 0247_ $$2ISSN$$a1867-1381
000902286 0247_ $$2ISSN$$a1867-8548
000902286 0247_ $$2Handle$$a2128/28934
000902286 0247_ $$2WOS$$aWOS:000710519000001
000902286 037__ $$aFZJ-2021-04149
000902286 082__ $$a550
000902286 1001_ $$00000-0002-5662-8476$$aNussbaumer, Clara M.$$b0$$eCorresponding author
000902286 245__ $$aModification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
000902286 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000902286 3367_ $$2DRIVER$$aarticle
000902286 3367_ $$2DataCite$$aOutput Types/Journal article
000902286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636382988_21912
000902286 3367_ $$2BibTeX$$aARTICLE
000902286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902286 3367_ $$00$$2EndNote$$aJournal Article
000902286 520__ $$aNitrogen oxides (NOx≡NO+NO2) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of NO2, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present NO2 measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the NO2 reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, NO2 artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the NO2 measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of NO2 measurements in laboratory and field studies.
000902286 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902286 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902286 7001_ $$0P:(DE-HGF)0$$aParchatka, Uwe$$b1
000902286 7001_ $$00000-0003-4419-2502$$aTadic, Ivan$$b2
000902286 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b3
000902286 7001_ $$00000-0001-9417-587X$$aMarno, Daniel$$b4
000902286 7001_ $$0P:(DE-HGF)0$$aMartinez, Monica$$b5
000902286 7001_ $$0P:(DE-HGF)0$$aRohloff, Roland$$b6
000902286 7001_ $$00000-0002-6868-714X$$aHarder, Hartwig$$b7
000902286 7001_ $$0P:(DE-HGF)0$$aKluge, Flora$$b8
000902286 7001_ $$00000-0002-7851-6029$$aPfeilsticker, Klaus$$b9
000902286 7001_ $$00000-0002-7327-8893$$aObersteiner, Florian$$b10
000902286 7001_ $$00000-0001-8291-345X$$aZöger, Martin$$b11
000902286 7001_ $$0P:(DE-HGF)0$$aDoerich, Raphael$$b12
000902286 7001_ $$00000-0001-8669-0230$$aCrowley, John N.$$b13
000902286 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b14
000902286 7001_ $$0P:(DE-HGF)0$$aFischer, Horst$$b15
000902286 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-6759-2021$$gVol. 14, no. 10, p. 6759 - 6776$$n10$$p6759 - 6776$$tAtmospheric measurement techniques$$v14$$x1867-8548$$y2021
000902286 8564_ $$uhttps://juser.fz-juelich.de/record/902286/files/amt-14-6759-2021.pdf$$yOpenAccess
000902286 909CO $$ooai:juser.fz-juelich.de:902286$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b3$$kFZJ
000902286 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902286 9141_ $$y2021
000902286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000902286 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902286 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000902286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000902286 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902286 9801_ $$aFullTexts
000902286 980__ $$ajournal
000902286 980__ $$aVDB
000902286 980__ $$aUNRESTRICTED
000902286 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902286 981__ $$aI:(DE-Juel1)ICE-3-20101013