000902287 001__ 902287
000902287 005__ 20240709081749.0
000902287 0247_ $$2doi$$a10.1063/5.0054859
000902287 0247_ $$2ISSN$$a0021-9606
000902287 0247_ $$2ISSN$$a1089-7690
000902287 0247_ $$2ISSN$$a1520-9032
000902287 0247_ $$2Handle$$a2128/28935
000902287 0247_ $$2altmetric$$aaltmetric:110017050
000902287 0247_ $$2pmid$$a34293904
000902287 0247_ $$2WOS$$aWOS:000692367100001
000902287 037__ $$aFZJ-2021-04150
000902287 082__ $$a530
000902287 1001_ $$00000-0002-6662-7784$$aNeeman, E. M.$$b0
000902287 245__ $$aThe impact of water vapor on the OH reactivity toward CH 3 CHO at ultra-low temperatures (21.7–135.0 K): Experiments and theory
000902287 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2021
000902287 3367_ $$2DRIVER$$aarticle
000902287 3367_ $$2DataCite$$aOutput Types/Journal article
000902287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636383111_20914
000902287 3367_ $$2BibTeX$$aARTICLE
000902287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902287 3367_ $$00$$2EndNote$$aJournal Article
000902287 520__ $$aThe role of water vapor (H2O) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of H2O was previously reported at temperatures between 60 and 118 K. In this work, we used Laval nozzle expansions to reinvestigate the impact of H2O on the OH-reactivity with acetaldehyde between 21.7 and 135.0 K. The results of this comprehensive study demonstrate that water, instead, slows down the reaction by factors of ∼3 (21.7 K) and ∼2 (36.2–89.5 K), and almost no effect of added H2O was observed at 135.0 K
000902287 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902287 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902287 7001_ $$0P:(DE-HGF)0$$aGonzález, D.$$b1
000902287 7001_ $$00000-0002-2523-6242$$aBlázquez, S.$$b2
000902287 7001_ $$00000-0003-4853-9956$$aBallesteros, B.$$b3
000902287 7001_ $$00000-0001-5719-9899$$aCanosa, A.$$b4
000902287 7001_ $$00000-0001-6769-0470$$aAntiñolo, M.$$b5
000902287 7001_ $$0P:(DE-Juel1)167140$$aVereecken, L.$$b6$$eCorresponding author
000902287 7001_ $$00000-0001-8776-6807$$aAlbaladejo, J.$$b7
000902287 7001_ $$0P:(DE-HGF)0$$aJiménez, E.$$b8$$eCorresponding author
000902287 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0054859$$gVol. 155, no. 3, p. 034306 -$$n3$$p034306 -$$tThe journal of chemical physics$$v155$$x1089-7690$$y2021
000902287 8564_ $$uhttps://juser.fz-juelich.de/record/902287/files/5.0054859.pdf$$yPublished on 2021-04-22. Available in OpenAccess from 2022-04-22.
000902287 909CO $$ooai:juser.fz-juelich.de:902287$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b6$$kFZJ
000902287 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902287 9141_ $$y2021
000902287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902287 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2019$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-02$$wger
000902287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000902287 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000902287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902287 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902287 9801_ $$aFullTexts
000902287 980__ $$ajournal
000902287 980__ $$aVDB
000902287 980__ $$aUNRESTRICTED
000902287 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902287 981__ $$aI:(DE-Juel1)ICE-3-20101013