000902288 001__ 902288
000902288 005__ 20240712101024.0
000902288 0247_ $$2doi$$a10.1021/acsearthspacechem.1c00230
000902288 0247_ $$2Handle$$a2128/28936
000902288 0247_ $$2WOS$$aWOS:000697335600006
000902288 037__ $$aFZJ-2021-04151
000902288 082__ $$a550
000902288 1001_ $$0P:(DE-HGF)0$$aAlarcón, Paulo$$b0
000902288 245__ $$aGas-Phase Reaction Kinetics of the Ortho and Ipso Adducts 1,2,4,5-Tetramethylbenzene–OH with O 2
000902288 260__ $$aWashington, DC$$bACS Publications$$c2021
000902288 3367_ $$2DRIVER$$aarticle
000902288 3367_ $$2DataCite$$aOutput Types/Journal article
000902288 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636383585_21912
000902288 3367_ $$2BibTeX$$aARTICLE
000902288 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902288 3367_ $$00$$2EndNote$$aJournal Article
000902288 520__ $$aThe reversible reaction of OH radicals with 1,2,4,5-tetramethylbenzene (1245-TeMB, durene) leads to adducts at the substituted (ipso) and unsubstituted (ortho) positions of the ring. By the use of flash photolysis for production and resonance fluorescence for detection of OH, the gas-phase reactions of O2 with these adducts were investigated over the temperature range of 300–340 K in He at 200 mbar. The decay of OH, generated by pulsed vacuum-UV photolysis of H2O, was monitored under slow-flow conditions in the presence of 1245-TeMB and O2 at concentrations of up to 19 × 1012 cm–3 and 2 × 1016 cm–3, respectively. Triexponential OH decays resulted from the unimolecular decomposition of the two adducts, representing OH reservoirs with different stabilities. In the presence of O2, additional adduct loss pathways exist, leading to faster OH consumption. Triexponential functions fitted to these decays were analyzed to obtain rate constants for the reactions of O2 with both adducts. Rate constants in the range of (4–13) × 10–15 and (0.3–3) × 10–15 cm3 s–1 were obtained for the ortho and the ipso adducts, respectively, depending on temperature and assumptions regarding details of the underlying mechanism of adduct isomer formation and isomerization. At O2 concentrations exceeding about 1 × 1016 cm–3, deviations from a linear dependence of the adduct loss rates on the O2 concentration indicate an even more complex mechanism. The validity of the rate constants is therefore confined to O2 concentrations below 1 × 1016 cm–3. The adduct + O2 rate constants for 1245-TeMB are greater than the corresponding previously obtained rate constants for benzene, toluene, and p- and m-xylene but smaller than those for hexamethylbenzene. The results are discussed in terms of the current knowledge about the mechanism of OH-induced degradation of aromatic compounds in the presence of O2.
000902288 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902288 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902288 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b1$$eCorresponding author$$ufzj
000902288 7001_ $$00000-0001-6390-6465$$aBerkemeier, Thomas$$b2
000902288 7001_ $$00000-0003-2313-0628$$aLammel, Gerhard$$b3
000902288 7001_ $$00000-0003-1412-3557$$aPöschl, Ulrich$$b4
000902288 7001_ $$00000-0002-8650-5514$$aZetzsch, Cornelius$$b5$$eCorresponding author
000902288 773__ $$0PERI:(DE-600)2883780-0$$a10.1021/acsearthspacechem.1c00230$$gVol. 5, no. 9, p. 2243 - 2251$$n9$$p2243 - 2251$$tACS earth and space chemistry$$v5$$x2472-3452$$y2021
000902288 8564_ $$uhttps://juser.fz-juelich.de/record/902288/files/acsearthspacechem.1c00230.pdf$$yOpenAccess
000902288 909CO $$ooai:juser.fz-juelich.de:902288$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b1$$kFZJ
000902288 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902288 9141_ $$y2021
000902288 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000902288 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902288 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS EARTH SPACE CHEM : 2019$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902288 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000902288 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000902288 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902288 9801_ $$aFullTexts
000902288 980__ $$ajournal
000902288 980__ $$aVDB
000902288 980__ $$aUNRESTRICTED
000902288 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902288 981__ $$aI:(DE-Juel1)ICE-3-20101013