000902291 001__ 902291
000902291 005__ 20240712101024.0
000902291 0247_ $$2doi$$a10.5194/acp-21-12665-2021
000902291 0247_ $$2ISSN$$a1680-7316
000902291 0247_ $$2ISSN$$a1680-7324
000902291 0247_ $$2Handle$$a2128/28944
000902291 0247_ $$2altmetric$$aaltmetric:112404589
000902291 0247_ $$2WOS$$aWOS:000691776500002
000902291 037__ $$aFZJ-2021-04154
000902291 082__ $$a550
000902291 1001_ $$0P:(DE-Juel1)176215$$aHantschke, Luisa$$b0
000902291 245__ $$aAtmospheric photooxidation and ozonolysis of Δ<sup>3</sup>-carene and 3-caronaldehyde: rate constants and product yields
000902291 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000902291 3367_ $$2DRIVER$$aarticle
000902291 3367_ $$2DataCite$$aOutput Types/Journal article
000902291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636386020_22372
000902291 3367_ $$2BibTeX$$aARTICLE
000902291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902291 3367_ $$00$$2EndNote$$aJournal Article
000902291 520__ $$aThe oxidation of Δ3-carene and one of its main oxidation products, caronaldehyde, by the OH radical and O3 was investigated in the atmospheric simulation chamber SAPHIR under atmospheric conditions for NOx mixing ratios below 2 ppbv. Within this study, the rate constants of the reaction of Δ3-carene with OH and O3 and of the reaction of caronaldehyde with OH were determined to be (8.0±0.5)×10−11 cm3 s−1 at 304 K, (4.4±0.2)×10−17 cm3 s−1 at 300 K and (4.6±1.6)×10−11 cm3 s−1 at 300 K, in agreement with previously published values. The yields of caronaldehyde from the reaction of OH and ozone with Δ3-carene were determined to be 0.30±0.05 and 0.06±0.02, respectively. Both values are in reasonably good agreement with reported literature values. An organic nitrate (RONO2) yield from the reaction of NO with RO2 derived from Δ3-carene of 0.25±0.04 was determined from the analysis of the reactive nitrogen species (NOy) in the SAPHIR chamber. The RONO2 yield of the reaction of NO with RO2 derived from the reaction of caronaldehyde with OH was found to be 0.10±0.02. The organic nitrate yields of Δ3-carene and caronaldehyde oxidation with OH are reported here for the first time in the gas phase. An OH yield of 0.65±0.10 was determined from the ozonolysis of Δ3-carene. Calculations of production and destruction rates of the sum of hydroxyl and peroxy radicals (ROx=OH+HO2+RO2) demonstrated that there were no unaccounted production or loss processes of radicals in the oxidation of Δ3-carene for conditions of the chamber experiments. In an OH-free experiment with added OH scavenger, the photolysis frequency of caronaldehyde was obtained from its photolytical decay. The experimental photolysis frequency was a factor of 7 higher than the value calculated from the measured solar actinic flux density, an absorption cross section from the literature and an assumed effective quantum yield of unity for photodissociation.
000902291 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902291 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902291 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b1
000902291 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b2
000902291 7001_ $$0P:(DE-Juel1)174162$$aCho, Changmin$$b3
000902291 7001_ $$0P:(DE-Juel1)171432$$aReimer, David$$b4$$ufzj
000902291 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b5$$ufzj
000902291 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b6
000902291 7001_ $$0P:(DE-Juel1)173895$$aGlowania, Marvin$$b7
000902291 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b8
000902291 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b9
000902291 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b10
000902291 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b11$$eCorresponding author
000902291 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-12665-2021$$gVol. 21, no. 16, p. 12665 - 12685$$n16$$p12665 - 12685$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000902291 8564_ $$uhttps://juser.fz-juelich.de/record/902291/files/acp-21-12665-2021.pdf$$yOpenAccess
000902291 909CO $$ooai:juser.fz-juelich.de:902291$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176215$$aForschungszentrum Jülich$$b0$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b1$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b2$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b3$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171432$$aForschungszentrum Jülich$$b4$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b5$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b6$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b8$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b9$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b10$$kFZJ
000902291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b11$$kFZJ
000902291 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902291 9141_ $$y2021
000902291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902291 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902291 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902291 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902291 9801_ $$aFullTexts
000902291 980__ $$ajournal
000902291 980__ $$aVDB
000902291 980__ $$aUNRESTRICTED
000902291 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902291 981__ $$aI:(DE-Juel1)ICE-3-20101013