000902295 001__ 902295
000902295 005__ 20240712101014.0
000902295 0247_ $$2doi$$a10.5194/acp-21-14333-2021
000902295 0247_ $$2ISSN$$a1680-7316
000902295 0247_ $$2ISSN$$a1680-7324
000902295 0247_ $$2Handle$$a2128/28947
000902295 0247_ $$2altmetric$$aaltmetric:114151107
000902295 0247_ $$2WOS$$aWOS:000703045500001
000902295 037__ $$aFZJ-2021-04158
000902295 082__ $$a550
000902295 1001_ $$00000-0003-1685-6957$$aEger, Philipp G.$$b0
000902295 245__ $$aImpact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results
000902295 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000902295 3367_ $$2DRIVER$$aarticle
000902295 3367_ $$2DataCite$$aOutput Types/Journal article
000902295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636437083_22336
000902295 3367_ $$2BibTeX$$aARTICLE
000902295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902295 3367_ $$00$$2EndNote$$aJournal Article
000902295 520__ $$aBased on the first measurements of gas-phase pyruvic acid (CH3C(O)C(O)OH) in the boreal forest, we derive effective emission rates of pyruvic acid and compare them with monoterpene emission rates over the diel cycle. Using a data-constrained box model, we determine the impact of pyruvic acid photolysis on the formation of acetaldehyde (CH3CHO) and the peroxy radicals CH3C(O)O2 and HO2 during an autumn campaign in the boreal forest.The results are dependent on the quantum yield (φ) and mechanism of the photodissociation of pyruvic acid and the fate of a likely major product, methylhydroxy carbene (CH3COH). With the box model, we investigate two different scenarios in which we follow the present IUPAC (IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, 2021) recommendations with φ = 0.2 (at 1 bar of air), and the main photolysis products (60 %) are acetaldehyde + CO2 with 35 % C–C bond fission to form HOCO and CH3CO (scenario A). In the second scenario (B), the formation of vibrationally hot CH3COH (and CO2) represents the main dissociation pathway at longer wavelengths (∼ 75 %) with a ∼ 25 % contribution from C–C bond fission to form HOCO and CH3CO (at shorter wavelengths). In scenario 2 we vary φ between 0.2 and 1 and, based on the results of our theoretical calculations, allow the thermalized CH3COH to react with O2 (forming peroxy radicals) and to undergo acid-catalysed isomerization to CH3CHO.When constraining the pyruvic acid to measured mixing ratios and independent of the model scenario, we find that the photolysis of pyruvic acid is the dominant source of CH3CHO with a contribution between ∼ 70 % and 90 % to the total production rate. We find that the photolysis of pyruvic acid is also a major source of the acetylperoxy radical, with contributions varying between ∼ 20 % and 60 % dependent on the choice of φ and the products formed. HO2 production rates are also enhanced, mainly via the formation of CH3O2. The elevated production rates of CH3C(O)O2 and HO2 and concentration of CH3CHO result in significant increases in the modelled mixing ratios of CH3C(O)OOH, CH3OOH, HCHO, and H2O2.
000902295 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902295 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902295 7001_ $$0P:(DE-Juel1)167140$$aVereecken, Luc$$b1
000902295 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b2
000902295 7001_ $$0P:(DE-HGF)0$$aSchuladen, Jan$$b3
000902295 7001_ $$0P:(DE-HGF)0$$aSobanski, Nicolas$$b4
000902295 7001_ $$0P:(DE-HGF)0$$aFischer, Horst$$b5
000902295 7001_ $$00000-0002-1610-0132$$aKaru, Einar$$b6
000902295 7001_ $$0P:(DE-HGF)0$$aWilliams, Jonathan$$b7
000902295 7001_ $$0P:(DE-HGF)0$$aVakkari, Ville$$b8
000902295 7001_ $$00000-0002-1881-9044$$aPetäjä, Tuukka$$b9
000902295 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b10
000902295 7001_ $$00000-0003-2440-6104$$aPozzer, Andrea$$b11
000902295 7001_ $$0P:(DE-HGF)0$$aCrowley, John N.$$b12$$eCorresponding author
000902295 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-14333-2021$$gVol. 21, no. 18, p. 14333 - 14349$$n18$$p14333 - 14349$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000902295 8564_ $$uhttps://juser.fz-juelich.de/record/902295/files/acp-21-14333-2021.pdf$$yOpenAccess
000902295 909CO $$ooai:juser.fz-juelich.de:902295$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b1$$kFZJ
000902295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180928$$aForschungszentrum Jülich$$b2$$kFZJ
000902295 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902295 9141_ $$y2021
000902295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902295 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902295 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902295 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902295 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902295 9801_ $$aFullTexts
000902295 980__ $$ajournal
000902295 980__ $$aVDB
000902295 980__ $$aUNRESTRICTED
000902295 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902295 981__ $$aI:(DE-Juel1)ICE-3-20101013