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Abstract

Sequence learning, prediction and replay have been proposed to constitute the universal computations per-
formed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes these forms of com-
putation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a
context specific prediction of future sequence elements, and generates mismatch signals in case the predictions
are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive
fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and
synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mecha-
nisms. Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM
algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables
and parameters. The model learns high-order sequences by means of a structural Hebbian synaptic plasticity
mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input
integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow
sequence-specific feedforward subnetworks. These subnetworks provide the substrate for a faithful propagation of
sparse, synchronous activity, and, thereby, for a robust, context specific prediction of future sequence elements
as well as for the autonomous replay of previously learned sequences. By strengthening the link to biology, our
implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities.
The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role of
sequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effect
of the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.

Author summary

Essentially all data processed by mammals and many other living organisms is sequential. This holds true for all
types of sensory input data as well as motor output activity. Being able to form memories of such sequential
data, to predict future sequence elements, and to replay learned sequences is a necessary prerequisite for survival.
It has been hypothesized that sequence learning, prediction and replay constitute the fundamental computations
performed by the neocortex. The Hierarchical Temporal Memory (HTM) constitutes an abstract powerful algorithm
implementing this form of computation and has been proposed to serve as a model of neocortical processing. In
this study, we are reformulating this algorithm in terms of known biological ingredients and mechanisms to foster
the verifiability of the HTM hypothesis based on electrophysiological and behavioral data. The proposed model
learns continuously in an unsupervised manner by biologically plausible, local plasticity mechanisms, and successfully
predicts and replays complex sequences. Apart from establishing contact to biology, the study sheds light on the
mechanisms determining at what speed we can process sequences and provides an explanation of fast sequence replay
observed in the hippocampus and in the neocortex.

Introduction

Learning and processing sequences of events, objects, or percepts are fundamental computational building blocks of
cognition [1–4]. Prediction of upcoming sequence elements, mismatch detection and sequence replay in response to
a cue signal constitute central components of this form of processing. We are constantly making predictions about
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what we are going to hear, see, and feel next. We effortlessly detect suprising, non-anticipated events and adjust
our behavior accordingly. Further, we manage to replay learned sequences, for example, when generating motor
behavior, or recalling sequential memories. These forms of processing have been studied extensively in a number of
experimental works on sensory processing [5, 6], motor production [7], and decision making [8].

The majority of existing biologically motivated models of sequence learning addresses sequence replay [9–12].
Sequence prediction and mismatch detection are rarely discussed. The Hierarchical Temporal Memory (HTM) [13]
combines all three aspects: sequence prediction, mismatch detection and replay. Its Temporal Memory (TM) model
[14] learns complex context dependent sequences in a continuous and unsupervised manner using local learning
rules [15], and is robust against noise and failure in system components. Furthermore, it explains the functional
role of dendritic action potentials (dAPs) and proposes a mechanism of how mismatch signals can be generated in
cortical circuits [14]. Its capacity benefits from sparsity in the activity, and therefore provides a highly energy efficient
sequence learning and prediction mechanism [16].

The original formulation of the TM model is based on abstract models of neurons and synapses with discrete-
time dynamics. Moreover, the way the network forms synapses during learning is difficult to reconcile with biology.
Here, we propose a continuous-time implementation of the TM model derived from known biological principles such
as spiking neurons, dAPs, lateral inhibition, spike-timing-dependent structural plasticity, and homeostatic control of
synapse growth. This model successfully learns, predicts and replays high-order sequences, where the prediction of the
upcoming element is not only dependent on the current element, but also on the history. Bringing the model closer to
biology allows for testing its hypotheses based on experimentally accessible quantities such as synaptic connectivity,
synaptic currents, transmembrane potentials, or spike trains. Reformulating the model in terms of continuous-time
dynamics moreover enables us to address timing-related questions, such as the role of the sequence speed for the
prediction performance and the replay speed.

The study is organized as follows: the Methods describe the task, the network model, and the performance
measures. The Results illustrate how the interaction of the model’s components gives rise to context dependent
predictions and sequence replay, and evaluate the sequence processing speed and prediction performance. The Dis-
cussion finally compares the spiking TM model to other biologically motivated sequence learning models, summarizes
limitations, and provides suggestions for future model extensions.

Methods

In the following, we provide an overview of the task and the training protocol, the network model, and the task
performance analysis. A detailed description of the model and parameter values can be found in Tables 1 and 2.

Task and training protocol

In this study, we develop a neuronal architecture that can learn and process an ensemble of S sequences si =
{ζi,1, ζi,2,. . . , ζi,Ci} of ordered discrete items ζi,j with Ci ∈ N+, i ∈ [1, . . . , S]. The length of sequence si is denoted
by Ci. Throughout this study, the sequence elements ζi,j ∈ {A,B,C, . . .} are represented by Latin characters, serving
as placeholders for arbitrary discrete objects or percepts, such as images, numbers, words, musical notes, or movement
primitives (Fig. 1A). The order of the sequence elements within a given sequence represents the temporal order of
item occurrence.

The tasks to be solved by the network consist of

i) predicting subsequent sequence elements in response to the presentation of other elements,

ii) detecting unanticipated stimuli and generating a mismatch signal if the prediction is not met, and

iii) autonomously replaying sequences in response to a cue signal after learning.

The architecture learns sequences in a continuous manner: the network is exposed to repeated presentations of
a given ensemble of sequences (e.g., {A,D,B,E} and {F,D,B,C} in Fig. 1B). In the prediction mode (task i) and ii)),
there is no distinction between a “training” and a “testing” phase. At the beginning of the learning process, all
presented sequence elements are unanticipated and do not lead to a prediction (diffuse shades in Fig. 1B, left). As a
consequence, the network generates mismatch signals (flash symbols in Fig. 1B, left). After successful learning, the
presentation of some sequence element leads to a prediction of the subsequent stimulus (colored arrows in Fig. 1B).
In case this subsequent stimulus does not match the prediction, the network generates a mismatch signal (red arrow
and flash symbol in Fig. 1B, right). The learning process is entirely unsupervised, i.e., the prediction performance
does not affect the learning. As described in Sequence replay, the network can be configured into a replay mode
where the network autonomously replays learned sequences in response to a cue signal (task iii)).

In general, the sequences in this study are “high-order” sequences, similar to those generated by a high-order
Markov chain; the prediction of an upcoming sequence element requires accounting for not just the previous element,
but for (parts of) the entire sequence history, i.e., the context. Sequences within a given set of training data can
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be partially overlapping; they may share certain elements or subsequences (such as in {A,D,B,E} and {F,D,B,C}).
Similarly, the same sequence element (but not the first one, see Limitations and outlook) may occur multiple times
within the same sequence (such as in {A,D,B,D}). Throughout this work, we use two sequence sets:

Sequence set I: For an illustration of the learning process and the network dynamics in the prediction (section
Sequence learning and prediction) and in the replay mode (section Sequence replay), as well as for the investigation
of the sequence processing speed (section Dependence of prediction performance on the sequence speed), we start
with a simple set of two partially overlapping sequences s1 = {A,D,B,E} and s2 = {F,D,B,C} (see Fig. 1B).

Sequence set II: For a more rigorous evaluation of the sequence prediction performance (section Prediction perfor-
mance), we consider a set of S = 6 high-order sequences: s1 = {E,N,D,I,J}, s2 = {L,N,D,I,K}, s3 = {G,J,M,C,N},
s4 = {F,J,M,C,I}, s5 = {B,C,K,H,I}, s6 = {A,C,K,H,F}, each consisting of C = 5 elements. The complexity of this
sequence ensemble is comparable to the one used in [14], but is more demanding in terms of the high-order context
dependence.

Results for a third sequence set composed of sequences with recurring first elements are summarized in Fig. S2.

A

sequence data 

inputs

predictions

B

EA D B CF D B EA D B

ED B

CF D B
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CA D B
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EA , D ,B ,

prediction error 100% 100% 0% 0% ~33.33%

mismatch

...

, 1, 2, 3, 4 ,

time

correct pred. correct pred. mismatch

Fig 1: Sketch of the task and the learning protocol. A) The neuronal network model developed in this study learns and
processes sequences of ordered discrete elements, here represented by characters “A”, “B”, “C”, . . . . Sequence elements may
constitute arbitrary discrete items, such as musical notes, numbers, or images. The order of sequence elements represents the
temporal order of item occurrence. B) After repeated, consistent presentation of sets of high-order sequences, i.e., sequences
with overlapping characters (here, {A,D,B,E} and {F,D,B,C}), the model learns to predict subsequent elements in response to
the presentation of other elements (blue arrows) and to detect unanticipated elements by generating a mismatch signal if the
prediction is not met (red arrows and flash symbols). The learning process is continuous and unsupervised. At the beginning
of the learning process, all presented elements are unanticipated and hence trigger the generation of a mismatch signal. The
learning progress is monitored and quantified by the prediction error (see Task performance measures).

Network model

Algorithmic requirements. To solve the tasks outlined in Task and training protocol, the network model needs
to implement a number of algorithmic components. Here, we provide an overview of these components and their
corresponding implementations:

• Learning and storage of sequences: in both the original and our model, sequences are represented by specific
subnetworks embedded into the recurrent network. During the learning process, these subnetworks are carved
out in an unsupervised manner by a form of structural Hebbian plasticity.

• Context specificity: in our model, learning of high-order sequences is enabled by a sparse, random potential
connectivity, and by a homeostatic regulation of synaptic growth.

• Generation of predictions: neurons are equipped with a predictive state, implemented by a nonlinear synaptic
integration mimicking the generation of dendritic action potentials (dAPs).

• Mismatch detection: only few neurons become active if a prediction matches the stimulus. In our model, this
sparsity is realized by a winner-take-all (WTA) dynamics implemented in the form of inhibitory feedback. In
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case of non-anticipated stimuli, the WTA dynamics cannot step in, thereby leading to a non-sparse activation
of larger neuron populations.

• Sequence replay: autonomous replay of learned sequences in response to a cue signal is enabled by increasing
neuronal excitability.

In the following paragraphs, the implementations of these components and the differences between the original and
our model are explained in more detail.

Network structure. The network consists of a population E of NE excitatory (“E”) and a population I of NI

inhibitory (“I”) neurons. The neurons in E are randomly and recurrently connected, such that each neuron in E
receives KEE excitatory inputs from other neurons in E . Note that these “EE” connections can be either “mature” or
“immature” (“effective” or “potential”; see below). In the neocortex, the degree of potential connectivity depends
on the distance between the neurons [17]. It can reach probabilities as high as 90% for neighboring neurons, and
decays to 0% for neurons that are farther apart. In this work, the connection probability is chosen such that
the connectivity is sufficiently dense allowing for the formation of feedforward subnetworks, and sufficiently sparse
for increasing the network capacity (see paragraph “Constraints on potential connectivity” below). The excitatory
population E is subdivided into M non-overlapping subpopulations M1, . . . ,MM , each of them containing neurons
with identical stimulus preference (“receptive field”; see below). Each subpopulationMk thereby represents a specific
element within a sequence (Fig. 2A,B). In the original TM model [14], a single sequence element is represented by
multiple (L) subpopulations (“minicolumns”). For simplicity, we identify the number M of subpopulations with the
number of elements required for a specific set of sequences, such that each sequence element is encoded by just one
subpopulation (L = 1). All neurons within a subpopulationMk are recurrently connected to a subpopulation-specific
inhibitory neuron k ∈ I. The inhibitory neurons in I are mutually unconnected.

External inputs. During the prediction mode, the network is driven by an ensemble X = {x1, . . . , xM} of M
external inputs, representing inputs from other brain areas, such as thalamic sources or other cortical areas. Each
of these external inputs xk represents a specific sequence element (“A”, “B”, . . . ), and feeds all neurons in the
subpopulation Mk with the corresponding stimulus preference. The occurrence of a specific sequence element ζi,j
at time ti,j is modeled by a single spike xk(t) = δ(t − ti,j) generated by the corresponding external source xk.
Subsequent sequence elements ζi,j and ζi,j+1 within a sequence si are presented with an inter-stimulus interval
∆T = ti,j+1 − ti,j . Subsequent sequences si and si+1 are separated in time by an inter-sequence time interval
∆Tseq = ti+1,1 − ti,Ci

. During the replay mode, we present only a cue signal encoding for first sequence elements
ζi,1 at times ti,1. Subsequent cues are separated in time with an inter-cue time interval ∆Tcue = ti+1,1− ti,1. In the
absence of any other (inhibitory) inputs, each external input spike is strong enough to evoke an immediate response
spike in all target neurons i ∈ Mk. Sparse activation of the subpopulations in response to the external inputs is
achieved by a winner-take-all mechanism implemented in the form of inhibitory feedback (see Sequence learning and
prediction).

Neuron and synapse model. In the original TM model [14], excitatory (pyramidal) neurons are described as
abstract three-state systems that can assume an active, a predictive, or a non-active state. State updates are
performed in discrete time. The current state is fully determined by the external input in the current time step and
the network state in the previous step. Each TM neuron is equipped with a number of dendrites (segments), modeled
as coincidence detectors. The dendrites are grouped into distal and proximal dendrites. Distal dendrites receive inputs
from other neurons in the local network, whereas proximal dendrites are activated by external sources. Inputs to
proximal dendrites have a large effect on the soma and trigger the generation of action potentials. Individual synaptic
inputs to a distal dendrite, in contrast, have no direct effect on the soma. If the total synaptic input to a distal
dendritic branch at a given time step is sufficiently large, the neuron becomes predictive. This dynamic mimics the
generation of dendritic action potentials (dAPs), NMDA spikes [18–20]), which result in a long-lasting depolarization
(∼50-500ms) of the somata of neocortical pyramidal neurons.

In contrast to the original study, the model proposed here employs neurons with continuous-time dynamics. For
all types of neurons, the temporal evolution of the membrane potential is given by the leaky integrate-and-fire model
Eq (10). The total synaptic input current of excitatory neurons is composed of currents in distal dendritic branches,
inhibitory currents, and currents from external sources. Inhibitory neurons receive only inputs from excitatory neurons
in the same subpopulation. Individual spikes arriving at dendritic branches evoke alpha-shaped postsynaptic currents,
see Eq (12). The dendritic current includes an additional nonlinearity describing the generation of dAPs: if the
dendritic current IED exceeds a threshold θdAP, it is instantly set to a the dAP plateau current IdAP, and clamped
to this value for a period of duration τdAP, see Eq (16). This plateau current leads to a long lasting depolarization
of the soma (see Fig. 3B). In this work, we use a single dendritic branch per neuron. However, the model could
easily be extended to include multiple dendritic branches. External and inhibitory inputs to excitatory neurons as
well as excitatory inputs to inhibitory neurons trigger exponential postsynaptic currents, see Eq (13–15). Similar
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Fig 2: Sketch of the network structure. A) The architecture constitutes a recurrent network of excitatory and inhibitory
neurons. Excitatory neurons are stimulated by external sources providing sequence-element specific inputs “A”,“D”, etc. The
excitatory neuron population is composed of subpopulations containing neurons with identical stimulus preference (gray cir-
cles). Connections between and within the excitatory subpopulations are random and sparse. Inhibitory neurons are recurrently
connected to excitatory neurons, but mutually unconnected. B) Initial connectivity matrix for excitatory connections to exci-
tatory neurons (EE connections). Target and source neurons are grouped into stimulus-specific subpopulations (“A”,. . . ,“F”).
Before learning, the excitatory neurons are sparsely and randomly connected via immature (potential) synapses (light gray
dots). C) During learning, sequence specific, sparsely connected feedforward subnetworks with mature (effective) synapses
are formed (light blue arrows: {A,D,B,E}, dark blue arrows: {F,D,B,C}.) D) EE connectivity matrix after learning. During
the learning process, subsets of connections between subpopulations corresponding to subsequent sequence elements become
mature and effective (light and dark blue dots). Mature connections are context specific (see distinct connectivity between
subpopulations “D” and “B” corresponding to different sequences), thereby providing the backbone for a reliable propagation
of sequence-specific activity. In panels B and D, only 10% of all EE connections are shown for clarity. Dark gray dots in panel
D correspond to mature connections between neurons that remain silent after learning. For details on the network structure,
see Table 1 and Table 2.

to the original implementation, an external input strongly depolarizes the neurons and causes them to fire. To this
end, the external weights JEX are chosen to be supra-threshold (see Fig. 3A). Inhibitory interactions implement the
WTA described in Sequence learning and prediction. The weights JIE of excitatory synapses on inhibitory neurons are
chosen such that the collective firing of a subset of ρ excitatory neurons in the corresponding subpopulation causes
the inhibitory neuron to fire. The weights JEI of inhibitory synapses on excitatory neurons are strong such that each
inhibitory spike prevents all excitatory neurons in the same subpopulation that have not generated a spike yet from
firing. All synaptic time constants, delays and weights are connection-type specific (see Table 1).

Plasticity dynamics. Both in the original [14] and in our model, the lateral excitatory connectivity between ex-
citatory neurons (EE connectivity) is dynamic and shaped by a Hebbian structural plasticity mechanism mimicking
principles known from the neuroscience literature [21–25]. All other connections are static. The dynamics of the EE
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Fig 3: Effect of dendritic action potentials (dAP) on the firing response to an external stimulus. Membrane-potential
responses to an external input (blue arrow, A), a strong dendritic input (brown arrow, B) triggering a dAP, and a combination
of both (C). Black and gray vertical bars mark times of excitatory and inhibitory spikes, respectively. The horizontal light blue
lines depict the dAP plateau. D) Magnified view of spike times from panels A and C. A dAP preceding the external input (as
in panel C) can speed up somatic, and hence, inhibitory firing, provided the time interval between the dAP and the external
input is in the right range. The excitatory neuron is connected bidirectionally to an inhibitory neuron (see sketch on the right).

connectivity is determined by the time evolution of the permanences Pij (i, j ∈ E), representing the synapse maturity,
and the synaptic weights Jij . Unless the permanence Pij exceeds a threshold θP, the synapse {j → i} is “imma-
ture” or “potential”, with zero synaptic weight Jij = 0. Upon threshold crossing, Pij ≥ θP, the synapse becomes
“mature” or “effective”, and its weight is assigned a fixed value Jij = W (∀i, j). Overall, the permanences evolve
according to a Hebbian plasticity rule: the synapse {j → i} is potentiated, i.e., Pij is increased, if the activation of
the postsynaptic cell i is immediately preceded by an activation of the presynaptic cell j. Otherwise, the synapse is
depressed, i.e., Pij is decreased. At the beginning of the learning process or during relearning, the activity in the indi-
vidual subpopulations is non-sparse. Hebbian learning alone would therefore lead to the strengthening of all existing
synapses between two subsequently activated subpopulations, irrespective of the context these two subpopulations
participate in. After learning, the subsets of neurons that are activated by a sequence element recurring in different
sequences would therefore largely overlap. As a consequence, it becomes harder to distinguish between different
contexts (histories) based on the activation patterns of these subsets. The original TM model [14] avoids this loss of
context sensitivity by restricting synaptic potentiation to a small subset of synapses between a given pair of source and
target subpopulations: if there are no predictive target neurons, the original algorithm selects a “matched” neuron
from the set of active postsynaptic cells as the one being closest to becoming predictive, i.e., the neuron receiving the
largest number of synaptic inputs on a given dendritic branch from the set of active presynaptic cells (provided this
number is sufficiently large). Synapse potentiation is then restricted to this set of matched neurons. In case there are
no potential synapses, the “least used” neuron or a randomly chosen neuron is selected as the “matched” cell, and
connected to the winner cell of the previously active subpopulation. Restricting synaptic potentiation to synapses
targeting such a subset of “matched” neurons is difficult to reconcile with biology. It is known that inhibitory inputs
targeting the dendrites of pyramidal cells can locally suppress backpropagating action potentials and, hence, synaptic
potentiation [26]. A selection mechanism based on such local inhibitory circuits would however involve extremely
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fast synapses and require fine-tuning of parameters. The model presented in this work circumvents the selection of
“matched” neurons and replaces this with a homeostatic mechanism controlled by the postsynaptic dAP rate. In the
following, the specifics of the plasticity dynamics used in this study are described in detail.

Within the interval [Pmin,ij , Pmax], the dimensionless permanences Pij(t) evolve according to a combination of an
additive spike-timing-dependent plasticity (STDP) rule [27] and a homeostatic component [28, 29]:

P−1max

dPij
dt

= λ+
∑
{t∗i }′

xj(t)δ(t− [t∗i + dEE])− λ−yi
∑
{t∗j }

δ(t− t∗j ) + λh
∑
{t∗i }′

(
z∗ − zi(t)

)
δ(t− t∗i ). (1)

At the boundaries Pmin,ij and Pmax, Pij(t) is clipped. While the maximum permanences Pmax are identical for all EE
connections, the minimal permanences Pmin,ij are uniformly distributed in the interval [P0,min, P0,max]. The first term
on the right-hand side of Eq (1) corresponds to the spike-timing dependent synaptic potentiation triggered by the
postsynaptic spikes at times t∗i ∈ {t∗i }′. Here, {t∗i }′ = {t∗i | ∃t∗j ∆tmin < t∗i − t∗j + dEE < ∆tmax} denotes the set of all
postsynaptic spike times t∗i for which there exists a (previous) presynaptic spike t∗j such that the time lag t∗i −t∗j +dEE
is larger than ∆tmin and smaller than ∆tmax. The potentiation is restricted to these time lags to avoid a growth of
synapses between synchronously active neurons belonging to the same subpopulation, and between neurons encoding
for the first elements in different sequences. Note that the potentiation update times lag the somatic postsynaptic
spike times by the delay dEE, which is here interpreted as a purely dendritic delay [27,30]. The potentiation increment
is determined by the dimensionless potentiation rate λ+, and the spiking trace xj(t) of the presynaptic neuron j,
which is updated according to

dxj
dt

= −τ−1+ xj(t) +
∑
t∗j

δ(t− t∗j ). (2)

The trace xj(t) is incremented by unity at each spike time t∗j , followed by an exponential decay with time constant τ+.
The potentiation increment ∆Pij at time t∗i therefore depends on the temporal distance between the postsynaptic
spike time t∗i and all presynaptic spike times t∗j ≤ t∗i (STDP with all-to-all spike pairing; [27]). The second term in
Eq (1) represents synaptic depression, and is triggered by each presynaptic spike at times t∗j ∈ {t∗j}. The depression
decrement yi = 1 is treated as a constant, independently of the postsynaptic spike history. The depression magnitude
is parameterized by the dimensionless depression rate λ−. The third term in Eq (1) corresponds to a homeostatic
control triggered by postsynaptic spikes at times t∗i ∈ {t∗i }′. Its overall impact is parameterized by the dimensionless
homeostasis rate λh. The homeostatic control enhances or reduces the synapse growth depending on the dAP trace
zi(t) of neuron i, the low-pass filtered dAP activity updated according to

dzi
dt

= −τ−1h zi(t) +
∑
k

δ(t− tkdAP,i). (3)

Here, τh represents the homeostasis time constant, and tkdAP,i the onset time of the kth dAP in neuron i. According
to Eq (1), synapse growth is boosted if the dAP activity zi(t) is below a target dAP activity z∗. Conversely,
high dAP activity exceeding z∗ reduces the synapse growth (Fig. 4). This homeostatic regulation of the synaptic
maturity controlled by the postsynaptic dAP activity constitutes a variation of previous models [28, 29] describing
’synaptic scaling’ [31–33]. It counteracts excessive synapse formation during learning driven by Hebbian structural
plasticity. In addition, the combination of Hebbian plasticity and synaptic scaling can introduce a competition between
synapses [28,29]. Here, we exploit this effect to ensure that synapses are generated in a context specific manner, and
thereby reduce the overlap between neuronal subpopulations activated by the same sequence element occurring in
different sequences. To this end, the homeostasis parameters z∗ = 1 and τh are chosen such that each neuron tends
to become predictive, i.e., generate a dAP, at most once during the presentation of a single sequence ensemble of
total duration ((C−1)∆T +∆Tseq)S (see Network model). The time constant τh is hence adapted to the parameters
of the task. For sequence sets I and II and the default inter-stimulus interval ∆T = 40 ms, it is set to τh = 440 ms
and τh = 1560 ms, respectively. In section Dependence of prediction performance on the sequence speed, we study
the effect of the sequence speed (inter-stimulus interval ∆T ) on the prediction performance for a given network
parameterization. For these experiments, τh = 440 ms is therefore fixed even though the inter-stimulus interval ∆T
is varied.

The prefactor P−1max in Eq (1) ensures that all learning rates λ+, λ− and λh are measured in units of the maximum
permanence Pmax.

Constraints on potential connectivity. The sequence processing capabilities of the proposed network model rely
on its ability to form sequence specific feed-forward subnetworks based on the skeleton provided by the random
potential connectivity. On the one hand, the potential connectivity must not be too diluted to ensure that a subset
of neurons representing a given sequence element can establish sufficiently many mature connections to a second
subset of neurons representing the subsequent element. On the other hand, a dense potential connectivity would
promote overlap between subnetworks representing different sequences, and thereby slow down the formation of
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Fig 4: Homeostatic regulation of the spike-timing-dependent structural plasticity by the dAP activity. Evolution of the
synaptic permanence (gray) and weight (black) during repetitive presynaptic-postsynaptic spike pairing for different levels of
the dAP activity. In the depicted example, presynaptic spikes precede the postsynaptic spikes by 40 ms for each spike pairing.
Consecutive spike pairs are separated by a 200 ms interval. In each panel, the postsynaptic dAP trace is clamped at a different
value: z = 0 (left), z = 1 (middle), z = 2 (right). The dAP target activity is fixed at z∗ = 1. The horizontal dashed and
dotted lines mark the maximum permanence Pmax and the maturity threshold θP , respectively.

context specific subnetworks during learning (see Sequence learning and prediction). Here, we therefore identify the
minimal potential connection probability p guaranteeing the existence of network motifs with a sufficient degree of
divergent-convergent connectivity.

Consider the subset Pij of ρ excitatory neurons representing the jth sequence element ζij in sequence si (see
Task and training protocol and Network model). During the learning process, the plasticity dynamics needs to
establish mature connections from Pij to a second subset Pi,j+1 of neurons in another subpopulation representing
the subsequent element ζi,j+1. Each neuron in Pi,j+1 must receive at least c = dθdAP/W e inputs from Pij to ensure
that synchronous firing of the neurons in Pij can evoke a dAP after synapse maturing. For a random, homogeneous
potential connectivity with connection probability p, the probability of finding these c potential connections for some
arbitrary target neuron is given by

q(c; ρ, p) =

ρ∑
k=c

(
ρ

k

)
pk(1− p)ρ−k. (4)

For a successful formation of sequence specific subnetworks during learning, the sparse subset Pij of presynaptic
neurons needs to recruit at least ρ targets in the set of nE neurons representing the subsequent sequence element
(Fig. 5A). The probability of observing such a divergent-convergent connectivity motif is given by

u(ρ; c, p, nE) =

nE∑
l=ρ

(
nE
l

)
ql(1− q)nE−l. (5)

Note that the above described motif does not require the size of the postsynaptic subset Pi,j+1 to be exactly ρ.
Eq (5) constrains the parameters p, c, nE and ρ to ensure such motifs exist in a random network. Fig. 5B illustrates
the dependence of the motif probability u on the connection probability p for our choice of parameters nE, c, and
ρ. For p ≥ 0.2, the existence of the divergent-convergent connectivity motif is almost certain (u ≈ 1). For smaller
connection probabilities p < 0.2, the motif probability quickly vanishes. Hence, p = 0.2 constitutes a reasonable
choice for the potential connection probability.

Network realizations and initial conditions. For every network realization, the potential connectivity and the
initial permanences are drawn randomly and independently. All other parameters are identical for different network
realizations. The initial values of all state variables are given in Table 1 and Table 2.

Simulation details. The network simulations are performed in the neural simulator NEST [34] under version
3.0 [35]. The differential equations and state transitions defining the excitatory neuron dynamics are expressed in
the domain specific language NESTML [36, 37] which generates the required C++ code for the dynamic loading into
NEST. Network states are synchronously updated using exact integration of the system dynamics on a discrete-time
grid with step size ∆t [38]. The full source code for the implementation with a list of other software requirements is
available at Zenodo: https://doi.org/10.5281/zenodo.5578212.
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Fig 5: Existence of divergent-convergent connectivity motifs in a random network. A) Sketch of the divergent-convergent
potential connectivity motif required for the formation of sequence specific subnetworks during learning. See main text for
details. B) Dependence of the motif probability u on the connection probability p for nE = 150, c = 5, and ρ = 20 (see
Table 2). The dotted vertical line marks the potential connection probability p = 0.2 used in this study.

Task performance measures

To assess the network performance, we monitor the dendritic currents reporting predictions (dAPs) as well as the
somatic spike times of excitatory neurons. To quantify the prediction error, we identify for each last element ζi,Ci

in
a sequence si all excitatory neurons that have generated a dAP in the time interval (ti,Ci

−∆T, ti,Ci
), where ti,Ci

and ∆T denote the time of the external input corresponding to the last sequence element ζi,Ci
and the inter-stimulus

interval, respectively (see Task and training protocol and Network model). All subpopulations Mk with at least
ρ/2 neurons generating a dAP are considered “predictive”. The prediction state of the network is encoded in an M
dimensional binary vector o, where ok = 1 if the kth subpopulation is predictive, and ok = 0 else. The

prediction error =
1

L

√√√√ M∑
k=1

(ok − vk)2 (6)

is defined as the Euclidean distance between o and the binary target vector v representing the pattern of external
inputs for each last element ζi,Ci

, normalized by the number L of subpopulations per sequence element. Furthermore,
we assess the

false positive rate =
1

L

M∑
k=1

Θ(ok − vk) (7)

and the

false negative rate =
1

L

M∑
k=1

Θ(vk − ok), (8)

where Θ(·) denotes the Heaviside function. In addition to these performance measures, we monitor for each last
sequence element the level of sparsity by measuring the ratio between the number of active neurons and the total
number LnE of neurons representing this element. During learning, we expose the network repetitively to the same
set {s1, . . . , sS} of sequences for a number of training episodes K. To obtain the total prediction performance in
each episode, we average the prediction error, the false negative and false positive rates, as well as the level of sparsity
across the set of sequences.
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Summary

Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X ); E and I
composed of M disjoint subpopulations Mk and Ik (k = 1, . . . ,M)

Connectivity

• sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model

• excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration
(dendritic action potentials)

• inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse model exponential or alpha-shaped postsynaptic currents (PSCs)

Plasticity homeostatic spike-timing dependent structural plasticity in excitatory-to-excitatory con-
nections

Populations

Name Elements Size

E = ∪Mi=kMk excitatory (E) neurons NE

I = ∪Mi=kIk inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k,
Mk ∩Ml = ∅ (∀k 6= l ∈ [1,M ])

nE

Ik inhibitory neurons in subpopulation k,
Ik ∩ Il = ∅ (∀k 6= l ∈ [1,M ])

nI

X = {x1, . . . , xM} external spike sources M

Connectivity

Source pop-
ulation

Target popu-
lation

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, synaptic time constants
τij = dEE; plastic weights Jij (∀i ∈ E , ∀j ∈ E ; “EE connections”)

Mk Ik all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights
Jij = JIE (∀i ∈Mk, ∀j ∈ Ik, ∀k ∈ [1,M ]; “IE connections”)

Ik Mk all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights
Jij = JEI (∀i ∈ Ik, ∀j ∈Mk, ∀k ∈ [1,M ]; “EI connections”)

Ik Ik none (∀k ∈ [1,M ]; “II connections”)

Xk = xk Mk one-to-all; fixed delays dik = dEX, synaptic time constants τij = τEX, and weights
Jik = JEX (∀i ∈Mk, ∀k ∈ [1,M ]; “EX connections”)

no self-connections (“autapses”), no multiple connections (“multapses”)

all unmentioned connections Mk → Il, Ik →Ml, Ik → Il, Xk →Ml (∀k 6= l) are absent

Table 1: Description of the network model (continued on next page). Parameter values are given in Table 2.
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Neuron and synapse
Neuron

Type leaky integrate-and-fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) and spiking activity si(t) of neuron i:

• emission of the kth spike of neuron i at time tki if

Vi(t
k
i ) ≥ θi (9)

with somatic spike threshold θi

• spike train: si(t) =
∑
k δ(t− t

k
i )

• reset and refractoriness:

Vi(t) = Vr ∀k, ∀t ∈
(
tki , t

k
i + τref,i

]
with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

τm,iV̇i(t) = −Vi(t) +Rm,iIi(t) (10)

with membrane resistance Rm,i =
τm,i
Cm,i

, membrane time constant τm,i, and total

synaptic input current Ii(t) (see Synapse)

• excitatory neurons: τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (∀i ∈ E)

• inhibitory neurons: τm,i = τm,I , Cm,i = Cm, θi = θI, τref,i = τref,I (∀i ∈ I)

Synapse
Type exponential or alpha-shaped postsynaptic currents (PSCs)

Description

• total synaptic input currents:

excitatory neurons: Ii(t) = IED,i(t) + IEX,i(t) + IEI,i(t), ∀i ∈ E
inhibitory neurons: Ii(t) = IIE,i(t), ∀i ∈ I

(11)

with dendritic, external, inhibitory and excitatory input currents IED,i(t), IEX,i(t),
IEI,i(t), IIE,i(t) evolving according to

IED,i(t) =
∑
j∈E

(αij ∗ sj)(t− dij) (12)

with αij(t) = Jij
e

τED
te−t/τEDΘ(t) and Θ(t) =

{
1 t ≥ 0

0 else
,

τEXİEX,i = −IEX,i(t) +
∑
j∈X

Jijsj(t− dij), (13)

τEIİEI,i = −IEI,i(t) +
∑
j∈I

Jijsj(t− dij), (14)

τIEİIE,i = −IIE,i(t) +
∑
j∈E

Jijsj(t− dij) (15)

• suprathreshold dynamics of dendritic currents (dAP generation):

– emission of kth dAP of neuron i at time tkdAP,i if IED,i(t
k
dAP,i) ≥ θdAP

– dAP current plateau:

IED,i(t) = IdAP ∀k, ∀t ∈
(
tkdAP,i, t

k
dAP,i + τdAP

)
(16)

with dAP current plateau amplitude IdAP, dAP current duration τdAP, and
dAP activation threshold θdAP

– reset: IED,i(t
k
dAP,i + τdAP) = 0 (∀k)

– reset and refractoriness in response to emission of lth somatic spike of neuron
i at time tli:

IED,i(t) = 0 ∀l, ∀t ∈
(
tli, t

l
i + τref,i

)
(17)

Table 1: Description of the network model (continued on next page). Parameter values are given in Table 2.
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Plasticity
Type spike-timing dependent structural plasticity and dAP-rate homeostasis

EE synapses

• dynamics of synaptic permanence Pij(t) (synapse maturity):

P−1
max

dPij
dt

= λ+

∑
{t∗i }

′

xj(t)δ(t− [t∗i + dEE])− λ−yi
∑
{t∗j }

δ(t− t∗j )

+ λh

∑
{t∗i }

′

(
z∗ − zi(t)

)
δ(t− t∗i )

with

– list of presynaptic spike times {t∗j},
– list of postsynaptic spike times
{t∗i }′ = {t∗i | ∃t∗j ∆tmin < t∗i − t∗j + dEE < ∆tmax},

– maximum permanence Pmax, potentiation and depression rates λ+, λ-, home-
ostasis rate λh, delay dEE, depression decrement yi,

– spike trace xj(t) of presynaptic neuron j, evolving according to

dxj
dt

= −τ−1
+ xj(t) +

∑
t∗j

δ(t− t∗j )

with presynaptic spike times t∗j and potentiation time constant τ+,

– dAP trace zi(t) of postsynaptic neuron i, evolving according to

dzi
dt

= −τ−1
h zi(t) +

∑
k

δ(t− tkdAP,i)

with onset time tkdAP,i of the kth dAP, homeostasis time constant τh, and

– target dAP activity z∗

• dynamics of synaptic weights JEE,ij :

JEE,ij(t) =

{
W if Pij(t) ≥ θP (mature synapse)

0 if Pij(t) < θP (immature synapse)

with weight of mature EE connections W and synapse maturity threshold θP

(for an algorithmic implementation of the plasticity dynamics, see AlgorithmS1)

all other synapses non-plastic

Table 1: Description of the network model (continued on next page). Parameter values are given in Table 2.
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Input

• prediction mode

– repetitive stimulation with the same set S = {s1, . . . , sS} of sequences si = {ζi,1, ζi,2,. . . , ζi,Ci}
of ordered discrete items ζi,j with number of sequences S and length Ci of ith sequence

– presentation of sequence element ζi,j at time ti,j modeled by single spike xk(t) = δ(t − ti,j),
generated by the corresponding external source xk

– inter-stimulus interval ∆T = ti,j+1 − ti,j between subsequent sequence elements ζi,j and ζi,j+1

within a sequence si

– inter-sequence time interval ∆Tseq = ti+1,1 − ti,Ci between subsequent sequences si and si+1

– example sequence sets:

∗ sequence set I: S={{A,D,B,E} and {F,D,B,C}}
∗ sequence set II: S={{E,N,D,I,J}, {L,N,D,I,K}, {G,J,M,C,N}, {F,J,M,C,I}, {B,C,K,H,I},
{A,C,K,H,F}}

• replay mode

– presentation of a cue encoding for first sequence elements ζi,1 at ti,1

– inter-cue time interval ∆Tcue = ti+1,1 − ti,1 between subsequent cues ζi,1 and ζi+1,1

Output

• somatic spike times {tki |∀i ∈ E , k = 1, 2, . . .}
• dendritic currents IED,i(t) (∀i ∈ E)

Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (∀i ∈ E ∪ I)

• dendritic currents: IED,i(0) = 0 (∀i ∈ E)

• external currents: IEX,i(0) = 0 (∀i ∈ E)

• inhibitory currents: IEI,i(0) = 0 (∀i ∈ E)

• excitatory currents: IIE,i(0) = 0 (∀i ∈ I)

• synaptic permanences: Pij(0) = Pmin,ij with Pmin,ij ∼ U(P0,min, P0,max) (∀i, j ∈ E)

• synaptic weights: JEE,ij(0) = 0 (∀i, j ∈ E)

• spike traces: xi(0) = 0 (∀i ∈ E)

• dAP traces: zi(0) = 0 (∀i ∈ E)

• potential connectivity and initial permanences randomly and independently drawn for each network real-
ization

Simulation details

• network simulations performed in NEST [34] version 3.0 [35]

• definition of excitatory neuron model using NESTML [36, 37]

• synchronous update using exact integration of system dynamics on discrete-time grid with step size ∆t [38]

• source code underlying this study: https://doi.org/10.5281/zenodo.5578212

Table 1: Description of the network model. Parameter values are given in Table 2.
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Name Value Description

Network

NE 2100 total number of excitatory neurons

NI 14 total number of inhibitory neurons

M A = 14 number of excitatory subpopulations (= number of external
spike sources)

nE NE/M = 150 number of excitatory neurons per subpopulation

nI NI/M = 1 number of inhibitory neurons per subpopulation

ρ 20 (target) number of active neurons per subpopulation after
learning = minimal number of coincident excitatory inputs
required to trigger a spike in postsynaptic inhibitory neurons

(Potential) Connectivity

KEE 420 number of excitatory inputs per excitatory neuron (EE in-
degree)

p KEE/NE = 0.2 probability of potential (excitatory) connections

KEI nI = 1 number of inhibitory inputs per excitatory neuron (EI in-
degree)

KIE nE number of excitatory inputs per inhibitory neuron (IE in-
degree)

KII 0 number of inhibitory inputs per inhibitory neuron (II in-
degree)

Excitatory neurons

τm,E 10 ms membrane time constant

τref,E 10 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0 mV reset potential

θE 20 mV (predictive mode),
5 mV (replay mode)

somatic spike threshold

IdAP 200 pA dAP current plateau amplitude

τdAP 60 ms dAP duration

θdAP 59 pA dAP threshold

Inhibitory neurons

τm,I 5 ms membrane time constant

τref,I 2 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0 mV reset potential

θI 15 mV spike threshold

Table 2: Model and simulation parameters (continued on next page). Parameters derived from other parameters are marked
in gray.
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Name Value Description
Synapse

W 12 pA weight of mature EE connections (EPSC amplitude)

J̃IE
θI
ρ

= 0.75 mV weight of IE connections (EPSP amplitude)

JIE 581.19 pA weight of IE connections (EPSC amplitude)

J̃EI −22.5 mV weight of EI connections (IPSP amplitude)

JEI −12915.49 pA weight of EI connections (IPSC amplitude)

J̃EX 22 mV weight of EX connections (EPSP amplitude)

JEX 4112.20 pA weight of EX connections (EPSC amplitude)

τEE 5 ms synaptic time constant of EE connections

τIE 0.5 ms synaptic time constant of IE connections

τEI 1 ms synaptic time constant of EI connections

τEX 2 ms synaptic time constant of EX connection

dEE 2 ms delay of EE connections (dendritic)

dIE 0.1 ms delay of IE connections

dEI 0.1 ms delay of EI connections

dEX 0.1 ms delay of EX connections

Plasticity
λ+ 0.08 (sequence set I),

0.28 (sequence set II)
potentiation rate

λ− 0.0015 (sequence set I),
0.0061 (sequence set II)

depression rate

θP 20 synapse maturity threshold

Pmin,ij ∼ U(P0,min, P0,max) minimum permanence

Pmax 20 maximum permanence

P0,min 0 minimal initial permanence

P0,max 8 maximal initial permanence

τ+ 20 ms potentiation time constant

z∗ 1 target dAP activity

λh 0.014 (sequence set I),
0.024 (sequence set II)

homeostasis rate

τh 440 ms (sequence set I),
1560 ms (sequence set II)

homeostasis time constant

yi 1 depression decrement

∆tmin 4 ms minimum time lag between pairs of pre- and postsynaptic
spikes at which synapses are potentiated

∆tmax 2∆T maximum time lag between pairs of pre- and postsynaptic
spikes at which synapses are potentiated

Input
L 1 number of subpopulations per sequence element = number

of target subpopulations per spike source

S 2 (sequence set I),
6 (sequence set II)

number of sequences per set

C 4 (sequence set I),
5 (sequence set II)

number of elements per sequence

A 14 alphabet length (total number of distinct sequence elements)

∆T {2, . . . ,40, . . . , 90}ms inter-stimulus interval

∆Tseq 2.5∆T inter-sequence interval

∆Tcue 80 ms inter-cue interval

Simulation
∆t 0.1 ms time resolution

K {80, 150} number of training episodes

Table 2: Model and simulation parameters (continued). Parameters derived from other parameters are marked in gray. Bold
numbers depict default values.
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Results

Sequence learning and prediction

According to the Temporal Memory (TM) model, sequences are stored in the form of specific paths through the
network. Prediction and replay of sequences correspond to a sequential sparse activation of small groups of neurons
along these paths. Non-anticipated stimuli are signaled in the form of non-sparse firing of these groups. This
subsection describes how the model components introduced in Network model interact and give rise to the network
structure and behavior postulated by TM. For illustration, we here consider a simple set of two partly overlapping
sequences {A,D,B,E} and {F,D,B,C} corresponding to the sequence set I (see Fig. 1B).

The initial sparse, random and immature network connectivity (Fig. 2A,B) constitutes the skeleton on which the
sequence-specific paths will be carved out during the learning process. To guarantee a successful learning, this initial
skeleton must be neither too sparse nor too dense (see Methods). Before learning, the presentation of a particular
sequence element causes all neurons with the corresponding stimulus preference to reliably and synchronously fire a
somatic action potential due to the strong, suprathreshold external stimulus (Fig. 3A). All other subpopulations remain
silent (see Fig. 6A,B). The lateral connectivity between excitatory neurons belonging to the different subpopulations
is subject to a form of Hebbian structural plasticity. Repetitive and consistent sequential presentation of sequence
elements turns immature connections between successively activated subpopulations into mature connections, and
hence leads to the formation of sequence-specific feed-forward subnetworks (see Fig. 2C,D). Synaptic depression
prunes connections not supporting the learned pattern, thereby reducing the chance of predicting wrong sequence
items (false positives).

During the learning process, the number of mature connections grows to a point where the activation of a certain
subpopulation by an external input generates dendritic action potentials (dAPs), a “prediction”, in a subset of neu-
rons in the subsequent subpopulation (blue neurons in Fig. 6C). The dAPs generate a long-lasting depolarization of
the soma (Fig. 3B). When receiving an external input, these depolarized neurons fire slightly earlier as compared to
non-depolarized (non-predictive) neurons (Fig. 3A,B,D). If the number of predictive neurons within a subpopulation is
sufficiently large, their advanced spikes (Fig. 3C) initiate a fast and strong inhibitory feedback to the entire subpopu-
lation, and thereby suppress subsequent firing of non-predictive neurons in this population (Fig. 6C,D). Owing to this
winner-take-all dynamics, the network generates sparse spiking in response to predicted stimuli, i.e., if the external
input coincides with a dAP-triggered somatic depolarization. In the presence of a non-anticipated, non-predicted
stimulus, the neurons in the corresponding subpopulation fire collectively in a non-sparse manner, thereby signaling
a “mismatch”.

In the model presented in this study, the initial synapse maturity levels, the permanences, are randomly chosen
within certain bounds. During learning, connections with a higher initial permanence mature first. This heterogeneity
in the initial permanences enables the generation of sequence specific sparse connectivity patterns between subse-
quently activated neuronal subpopulations (Fig. 2D). For each pair of sequence elements in a given sequence ensemble,
there is a unique set of postsynaptic neurons generating dAPs (Fig. 6D). These different activation patterns capture
the context specificity of predictions. When exposing a network that has learned the two sequences {A,D,B,E} and
{F,D,B,C} to the elements “A” and “F”, different subsets of neurons are activated in “D” and “B”. By virtue of
these sequence specific activation patterns, stimulation by {A,D,B} or {F,D,B} leads to correct predictions “E” or
“C”, respectively (Fig. 6C–F).

Heterogeneity in the permanences alone, however, is not sufficient to guarantee context specificity. The subsets
of neurons activated in different contexts may still exhibit a considerable overlap. This overlap is promoted by
Hebbian plasticity in the face of the initial non-sparse activity, which leads to a strengthening of connections to
neurons in the postsynaptic population in an unspecific manner (Fig. 7A,B). Moreover, the reoccurrence of the same
sequence elements in different co-learned sequences initially causes higher firing rates of the neurons in the respective
populations (“D” and “B” in Fig. 7). As a result, the formation of unspecific connections would even be accelerated
if synapse formation was driven by Hebbian plasticity alone. The model in this study counteracts this loss of context
specificity by supplementing the plasticity dynamics with a homeostatic component, which regulates synapse growth
based on the rate of postsynaptic dAPs. This form of homeostasis prevents the same neuron from becoming predictive
multiple times within the same set of sequences, and thereby reduces the overlap between subsets of neurons activated
within different contexts (Fig. 7C, Fig. S3). To further aid the formation of context specific paths, the density of the
initial potential connectivity skeleton is set close to the minimum value ensuring existence of the connectivity motifs
required for a faithful prediction (see Methods).

Prediction performance

To quantify the sequence prediction performance, we repetitively stimulate the network with the sequences in sequence
set I (see Task and training protocol), and continuously monitor the prediction error, the false-positive and false-
negative rates, as well as the fraction of active stimulated neurons as a measure of encoding sparsity (Fig. 8; Task
performance measures). To ensure the performance results are not specific to a single network, the evaluation is
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Fig 6: Context specific predictions. Sketches (left column) and raster plots of network activity (right column) before (top
row) and after learning of the two sequences {A,D,B,E} and {F,D,B,C} (middle and bottom rows). In the left column,
large light gray circles depict the excitatory subpopulations (same arrangement as in Fig. 2). Red, blue and gray circles mark
active, predictive and silent neurons, respectively. In the right column, red dots and blue lines mark somatic spikes and
dAP plateaus, respectively. Type and timing of presented stimuli are depicted by black arrows. A,B) Snapshots of network
activity upon subsequent presentation of the sequence elements “A” and “D” (panel A), and network activity in response
to presentation of the entire sequence {A,D,B,E} (panel B) before learning. All neurons in the stimulated subpopulations
become active. C,D) Same as panels A and B, but after learning. Presenting the first element “A” causes all neurons in
the corresponding subpopulations to fire. Activation of these neurons triggers dAPs (predictions) in a subset of neurons
representing the subsequent element “D”. When the next element “D” is presented, only these predictive neurons become
active, leading to predictions in the subpopulation representing the subsequent subpopulation (“B”), etc. E,F) Same as
panels C and D, but for sequence {F,D,B,C}. The subsets of neurons representing “D” and “B” activated during sequences
{A,D,B,E} and {F,D,B,C} are distinct, i.e., context specific. For clarity, panels B, D, and F show only a fraction of excitory
neurons (30%).

repeated for a number of randomly instantiated network realizations with different initial potential connectivities. At
the beginning of the learning process, all neurons of a stimulated subpopulation collectively fire in response to the
external input. Non-stimulated neurons remain silent. As the connectivity is still immature at this point, no dAPs are
triggered in postsynaptic neurons, and, hence, no predictions are generated. As a consequence, the prediction error,
the false-negative rate and the number of active neurons (in stimulated populations) are at their maximum, and the
false positive rate is zero (Fig. 8). During the first training episodes, the consistent collective firing of subsequently
activated populations leads to the formation of mature connections as a result of the Hebbian structural plasticity.
Upon reaching of a critical number of mature synapse, first dAPs (predictions) are generated in postsynaptic cells (in
Fig. 8, this happens after about 10 learning episodes). As a consequence, the false negative rate decreases, and the
stimulus responses become more sparse. At this early phase of the learning, the predictions of upcoming sequence
elements are not yet context specific (for sequence set I, non-sparse activity in “B” triggers a prediction in both “E”
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Fig 7: dAP-rate homeostasis enhances context specificity. A) Sketch of subpopulations of excitatory neurons representing
the elements of the two sequences {F,D,B} and {A,D,B}, depicted by light and dark blue colors, respectively. Before learning,
the connections between the subpopulations are immature (gray lines). Hence, for each element presentation, all neurons in
the respective subpopulations fire (filled circles). B) Hebbian plasticity drives the formation of mature connections between
subpopulations representing successive sequence elements (colored lines), and leads to sparse firing. The sets of neurons
contributing to the two sequences partly overlap. C) Incorporating dAP-rate homeostasis reduces this overlap in the activation
patterns.

and “C”, irrespective of the context). Hence, the false-positive rate transiently increases. As the context specific
connectivity is not consolidated at this point, more and more presynaptic subpopulations fail at triggering dAPs
in their postsynaptic targets when they switch to sparse firing. Therefore, the false-positive rate decreases again,
and the false-negative rate increases. In other words, there exists a negative feedback loop in the interim learning
dynamics where the generation of predictions leads to an increase in sparsity which, in turn, causes prediction failures
(and, hence, non-sparse firing). With an increasing number of training episodes, synaptic depression and homeostatic
regulation increase context selectivity and thereby break this loop. Eventually, sparse firing of presynaptic populations
is sufficient to reliably trigger predictions in their postsynaptic targets. For sequence set I, the total prediction error
becomes zero and the stimulus responses maximally sparse after about 30 training episodes (Fig. 8). For a time
resolved visualization of the learning dynamics, see Video S1.

Up to this point, we illustrated the model’s sequence learning dynamics and performance for a simple set of two
sequences (sequence set I). In the following, we assess the network’s sequence prediction performance for a more
complex sequence set (II) composed of five high-order sequences (see Task and training protocol), each consisting
of five elements. This sequence set is comparable to the one used in [14], but contains a larger amount of overlap
between sequences. The overall pattern of the learning dynamics resembles the one reported for sequence set I
(Fig. 9). The prediction error, the false-positive and false-negative rates as well as the sparsity measure vary more
smoothly, and eventually converge at minimal levels after about 40 training episodes. To compare the spiking TM
model with the original, non-spiking TM model, we repeat the experiment based on the simulation code provided
in [14], see Table S1. With our parameterization, the learning rates λ+ and λ− of the spiking model are by a factor
of about 10 smaller than in the original model. As a consequence, learning sequence set II with the original model
converges faster than with the spiking model (compare black and gray curves in Fig. 9). The ratio in learning speeds,
however, is not larger than about 2. Increasing the learning rates, i.e., the permanence increments, would speed up
the learning process in the spiking model, but bears the risk that a large fraction of potential connections mature
simultaneously. This would effectively overwrite the permanence heterogeneity which is essential to form context
specific connectivity patterns (see Sequence learning and prediction). As a result, the network performance would
decrease. The original model avoids this problem by limiting the number of potentiated synapses in each update step
(see “Plasticity dynamics” in Network model).

Dependence of prediction performance on the sequence speed

The reformulation of the original TM model in terms of continuous-time dynamics allows us to ask questions related
to timing aspects. Here, we investigate the sequence processing speed by identifying the range of inter-stimulus
intervals ∆T that permit a successful prediction performance (Fig. 10). The timing of the external inputs affects the
dynamics of the network in two respects. First, reliable predictions of sequence elements can only be made if the
time interval ∆T between two consecutive stimulus presentations is such that the second input coincides with the
somatic depolarization caused by the dAP triggered by the first stimulus. Second, the formation of sequence specific
connections by means of the spike-timing-dependent structural plasticity dynamics depends on ∆T .

If the external input does not coincide with the somatic dAP depolarization, i.e., if ∆T is too small or to large,
the respective target population responds in a non-sparse, non-selective manner (mismatch signal; Fig. 10C), and
in turn, generates false positives (Fig. 10B). For small ∆T , the external stimulus arrives before the dAP onset, i.e.,
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Fig 8: Sequence prediction performance for sequence set I. Dependence of the sequence prediction error (A), the false-
positive and false-negative rates (B), and the relative number of active neurons (C) on the number of training episodes during
repetitive stimulation with sequence set I (see Task and training protocol). Curves and error bands indicate the median as well
as the 5% and 95% percentiles across an ensemble of 5 different network realizations, respectively. All prediction performance
measures are calculated as a moving average over the last 4 training episodes. The dashed gray horizontal line in panel C
depicts the target sparsity level ρ/(LnE). Inter-stimulus interval ∆T = 40 ms. See Table 2 for remaining parameters.
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Fig 9: Sequence prediction performance for sequence set II and comparison with original model. Same figure arrange-
ment, training and measurement protocol as in Fig. 8. Data obtained during repetitive stimulation of the network with sequence
set II (see Task and training protocol). Gray curves depict results obtained using the original (non-spiking) TM model from [14]
with adapted parameters (see Table S1). The dashed gray horizontal line in panel C depicts the target sparsity level ρ/(LnE).

before it is predicted. In consequence, the false negative rate is high. For large ∆T , the false negative rate remains
low as the network is still generating predictions (Fig. 10B). The inter-stimulus interval ∆T in addition affects the
formation of sequence specific connections due to the dependence of the plasticity dynamics on the timing of pre-
and postsynaptic spikes, see Eq (1) and Eq (2). Larger ∆T result in smaller permanence increments, and thereby a
slow-down of the learning process (red curve in Fig. 10A).

Taken together, the model predicts a range of optimal inter-stimulus interval ∆T (Fig. 10A). For our choice of
network parameters, this range spans intervals between 10 ms and 75 ms. The lower bound depends primarily on the
synaptic time constant τEE, the spike transmission delay dEE, and the membrane time constant τm. The upper bound
is mainly determined by the dAP plateau duration τdAP.

Sequence replay

So far, we studied the network in the predictive mode, where the network is driven by external inputs and generates
predictions of upcoming sequence elements. Another essential component of sequence processing is sequence replay,
i.e., the autonomous generation of sequences in response to a cue signal (see Task and training protocol). After
successful learning, the network model presented in this study is easily configured into the replay mode by increasing
the neuronal excitability, such that the somatic depolarization caused by a dAP alone makes the neuron fire a somatic
spike. Here, this is implemented by lowering the somatic spike threshold θE of the excitatory neurons. In the biological
system, this increase in excitability could, for example, be caused by the effect of neuromodulators [39,40], additional
excitatory inputs from other brain regions implementing a top-down control, e.g, attention [41, 42], or propagating
waves during sleep [43, 44].

The presentation of the first sequence element activates dAPs in the subpopulation corresponding to the expected
next element in a previously learned sequence. Due to the reduced firing threshold in the replay mode, the somatic
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Fig 10: Effect of sequence speed on network performance. Dependence of the sequence prediction error, the learning
speed (episodes-to-solution; A), the false-positive and false-negative rates (B), and the relative number of active neurons (C)
on the inter-stimulus interval ∆T after 150 training episodes. Curves and error bands indicate the median as well as the 5%
and 95% percentiles across an ensemble of 5 different network realizations, respectively. Same task and network as in Fig. 8.

depolarization caused by these dAPs is sufficient to trigger somatic spikes during the rising phase of this depolarization.
These spikes, in turn, activate the subsequent element. This process repeats, such that the network autonomously
reactivates all sequence elements in the correct order, with the same context specificity and sparsity level as in the
predictive mode (see Fig. 11A,B). The latency between the activation of subsequent sequence elements is determined
by the spike transmission delay dEE, the synaptic time constant τEE, the membrane time constant τm,E, the synaptic
weights JEE,ij , the dAP current plateau amplitude IdAP, and the somatic firing threshold θE. For sequences that can
be successfully learned (see previous section), the time required for replaying the entire sequence is independent of
the inter-stimulus interval ∆T employed during learning (Fig. 11C).

As shown in the previous section, sequences cannot be learned if the inter-stimulus interval ∆T is too small or
too large. For small ∆T , connections between subpopulations corresponding to subsequent elements are strongly
potentiated by the Hebbian plasticity due to the consistent firing of pre- and postsynaptic populations during the
learning process. The network responses are, however, non-sparse, as the winner-take-all mechanism cannot be
invoked during the learning (Fig. 10C). In the replay mode, sequences are therefore replayed in a non-sparse and
non-context specific manner (left gray region in Fig. 11C). Similarly, connections between subsequent populations
are slowly potentiated for very large ∆T . With sufficiently long learning, sequences can still be replayed in the right
order, but the activity is non-sparse and therefore not context specific (right gray region in Fig. 11C).
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Fig 11: Sequence replay dynamics and speed. Autonomous replay of the sequences {A,D,B,E} (A) and {F,D,B,C} (B),
initiated by stimulating the subpopulations “A” and “F”, respectively. Red dots and blue lines mark somatic spikes and dAP
plateaus, respectively, for a fraction of neurons (30%) within each subpopulation. During learning, the inter-stimulus interval
∆T is set to 40 ms. C) Dependence of the sequence replay duration on the inter-stimulus interval ∆T during learning. Replay
duration is measured as the difference between the mean firing times of the populations representing the first and last elements
in a given sequence. Gray areas mark regions with low prediction performance (see Dependence of prediction performance on
the sequence speed). Error bands represent the mean ± standard deviation of the prediction error across 5 different network
realizations. Same network and training set as in Fig. 8.
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Discussion

Summary

In this work, we reformulate the Temporal Memory (TM) model [14] in terms of biophysical principles and parameters.
We replace the original discrete-time neuronal and synaptic dynamics with continuous-time models with biologically
interpretable parameters such as membrane and synaptic time constants and synaptic weights. We further substitute
the original plasticity algorithm with a more biologically plausible mechanism, relying on a form of Hebbian structural
plasticity, homeostatic control, and sparse random connectivity. Moreover, our model implements a winner-take-
all dynamics based on lateral inhibition that is compatible with the continuous-time neuron and synapse models.
We show that the revised TM model supports successful learning and processing of high-order sequences with a
performance similar to the one of the original model [14].

A new aspect that we investigated in the context of our work is sequence replay. After learning, the model is
able to replay sequences in response to a cue signal. The duration of sequence replay is independent of the sequence
speed during training, and determined by the intrinsic parameters of the network. In general, sequence replay is faster
than the sequence presentation during learning, consistent with sequence compression and fast replay observed in
hippocampus [45–47] and neocortex [6, 48].

Finally, we identified the range of possible sequence speeds that guarantee a successful learning and prediction.
Our model predicts an optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds
constrained by neuronal and synaptic parameters (e.g., firing threshold, neuronal and synaptic time constants, coupling
strengths, potentiation time constants). Within this range, the number of required training episodes is proportional
to the inter-stimulus interval ∆T .

Relationship to other models

The model presented in this work constitutes a recurrent, randomly connected network of neurons with predefined
stimulus preferences. The model learns sequences in an unsupervised manner using local learning rules. This is in
essence similar to several other spiking neuronal network models for sequence learning [9–12]. The new components
employed in this work are dendritic action potentials (dAPs) and Hebbian structural plasticity. We use structural
plasticity to be as close as possible to the original model, and Hebbian forms of this are also known from the liter-
ature [21, 22, 25]. However, preliminary results show that classical (non-structural) spike-timing-dependent plasticity
(STDP) can yield similar performance (see Fig. S1). Dendritic action potentials are instrumental for our model for two
reasons. First, they effectively lower the threshold for coincidence detection and thereby permit a reliable and robust
propagation of sparse activity [49,50]. In essence, our model bears similarities to the classical synfire chain [51], one
difference being that our ”mature” network is not a simple feed-forward network but has an abundance of recurrent
connections. As shown in [52], a stable propagation of synchronous activity requires a minimal number of neurons
in each synfire group. Without active dendrites, this minimal number is in the range of ∼100 for plausible single-cell
and synaptic parameters. In our (and in the original TM) model, coincidence detection happens in the dendrites.
The number of presynaptic spikes needed to trigger a dAP is small, of the order of ∼10 [53–55]. This helps to reduce
redundancy (only a small number of neurons needs to become active) and to increase the capacity of the network
(the number of different patterns that can be learned is increased with pattern sparsity; [56]). Second, dAPs equip
neurons with a third type of state (next to the quiescent and the firing state): the predictive state, i.e., a long lasting
(∼50-200 ms) strong depolarization of the soma. Due to the prolonged depolarization of the soma, the inter-stimulus
interval can be much larger than the synaptic time constants and delays. An additional benefit of dAPs, which is not
exploited in the current version of our model, is that they equip individual neurons with more possible states if they
comprise more than one dendritic branch. Each branch constitutes an independent pattern detector. The response
of the soma may depend on the collective predictions in different dendritic branches. A single neuron could hence
perform the types of computations that are usually assigned to multilayer perceptrons, i.e., small networks [57, 58].

Most of the existing models have been developed to replay learned sequences in response to a cue signal. The TM
model can perform this type of pattern completion, too. In addition, it can act as a quiet, sparsely active observer
of the world that becomes highly active only in the case of unforeseen, non-anticipated events. In this work, we
didn’t directly analyze the network’s mismatch detection performance. However, this could be easily achieved by
equipping each population with a “mismatch” neuron that fires if a certain fraction of neurons in the population
fires (threshold detectors). Moreover, the TM model model presents an efficient way of learning and encoding the
context in high-order sequences, without prior assignment of context specificity to individual neuron populations [9],
and without additional network components (such as reservoir networks in [11]).

An earlier spiking neural network version of the HTM model has already been devised in [59]. It constitutes a
proof-of-concept study demonstrating that the HTM model can be ported to an analog-digital neuromorphic hardware
system. It is restricted to small simplistic sequences and does not address the biological plausibility of the TM model.
In particular, it does not offer a solution to the question of how the model can perform online learning by known
biological ingredients. Our study delivers a solution for this based on local plasticity rules and permits a direct
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implementation on a neuromorphic hardware system.

Limitations and outlook

Our results on the sequence processing speed revealed that the model presented here can process fast sequences with
inter-stimulus intervals ∆T up to ∼75 ms. This range of processing speeds is relevant in many behavioral contexts
such as motor generation, vision (saccades), music perception and generation, language, and many others [60].
However, slow sequences with inter-stimulus intervals beyond several hundreds of milliseconds cannot be learned by
this model with biologically plausible parameters. This is problematic as behavioral time scales are often larger [60,61].
By increasing the duration τdAP of the dAP plateau, the upper bound for ∆T could be extended to 500 ms, and
maybe beyond [62]. However, for such long intervals, the synaptic potentiation would be very slow, unless the time
constant τ+ of the structural STDP is increased and the depression rate λ− is adapted accordingly. Furthermore,
while our model explains the fast replay observed in the hippocampus and cortex, it is not able to learn an element
specific timing and duration of sequence elements [5, 63, 64]. This could be overcome by equipping the model with
a working memory mechanism, which maintains the activity of the subpopulations for behaviorally relevant time
scales [9, 65]

The network model underlying our study is still simplistic. The number of subpopulations, the number of neurons
within each subpopulation, the number of dendritic branches per neuron, as well as the number of synapses per
neuron are far from realistic [14]. The number of sequences that can be successfully learned in this network is hence
rather small. Here, the model serves as a proof of concept demonstrating that the TM algorithm proposed in [14]
can be implemented using biological ingredient. In addition, the current work is focusing on sequence processing
at a single abstraction level, not accounting for a hierarchical network and task structure with both bottom-up and
top-down projections. A further simplification in this work is that the lateral inhibition within a subpopulation is
mediated by a single interneuron with unrealistically strong and fast connections to and from the pool of excitatory
neurons. In future versions of this model, this interneuron could be replaced by a recurrently connected network of
inhibitory neurons, thereby permitting more realistic weights, and simultaneously speeding up the interaction between
inhibitory and excitatory cells by virtue of the fast-tracking property of such networks [66].

Similar to the original TM model, the response of the population representing the first element in a sequence
is non-sparse, indicating that the first sequence element is not anticipated and can therefore not be predicted. If
a given first sequence element reoccurs within the same sequence (say, “A” in {A,B,A,C}) or in other sequences
(e.g., in {D,E,A,F}), the non-sparse response of the respective population to a first sequence element leads to
a simultaneous prediction of all possible subsequent elements, i.e., the generation of false positives. These false
predictions would lead to a pruning of functional synapses as a response of the homeostatic regulation to the
increased dAP activity. This could be overcome by three possible mechanisms: a) synaptic normalization avoiding
excessive synapse growth [67, 68], b) removing breaks between sequences, or c) sparse, sequence specific firing of
subpopulations representing first elements. Results of applying the last mechanism are shown in Fig. S2, where dAPs
are externally activated in random subsets of neurons in the populations representing first elements. In a more
realistic hierarchical network, a similar effect could be achieved by top-down projections from a higher level predicting
sequences of sequences.

In the original model, synapses targeting silent postsynaptic cells are depressed, even if the presynaptic neuron is
inactive. This pruning process, the freeing of unused synaptic resources, increases the network capacity while ensuring
context sensitivity. According to the structural plasticity dynamics employed in our study, synapse depression is bound
to presynaptic spiking, similar to other implementations of (non-structural) STDP [30]. As a consequence, strong
connections originating from silent presynaptic neurons are not depressed (dark gray dots in Fig. 2D). This may
complicate or slow down the learning of new sequences, and could be overcome by synaptic normalization.

For the dAP-rate homeostasis used in this study, the target dAP rate is set to one to make sure that each neuron
contributes at most one dAP during each training episode. As a consequence, the time constant of the dAP-rate
homeostasis is adapted to the duration of a training episode, which is in the range of few seconds in this work.
We are not aware of any biological mechanism that could account for such an adaptation. dAP-rate homeostasis is
mediated by the intracellular calcium concentration, which, in turn, controls the synthesis of synaptic receptors, and
hence, the synaptic strength. It is therefore known to be rather slow, acting on timescales of many minutes, hours or
days [32,33]. It is unclear to what extent the use of long homeostatic time constants and increased dAP target rates
would alter the model performance. Alternatively, the dAP-rate homeostasis could be replaced by other mechanisms
such as synaptic normalization.

Conclusion

Our work demonstrates that the principle mechanisms underlying sequence learning, prediction, and replay in the
TM model can be implemented using biologically plausible ingredients. By strengthening the link to biology, our
implementation permits a more direct evaluation of the TM model predictions based on electrophysiological and
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behavioral data. Furthermore, this implementation allows for a direct mapping of the TM model on neuromorphic
hardware systems.
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Supplementary Materials

Name Value Description

columnDimensions (M) 280 number of columns

numColumnsPerElement (L) 20 number of columns per element

cellsPerColumn (nE) 8 number of cells per column

initialPermanence (P0) [0.1, 0.3] initial permanence

connectedPermanence (θP ) 0.5 threshold at which a synapses is considered connected

minThreshold 15 if the number of potential synapses active on a seg-
ment is at least this threshold, it is said to be “match-
ing” and is eligible for learning.

maxNewSynapseCount 40 the maximum number of synapses added to a seg-
ment during learning

permanenceIncrement (λ+, λh) 0.1 amount by which permanences of synapses are incre-
mented during learning.

permanenceDecrement (λ−) 0.3 amount by which permanences of synapses are decre-
mented during learning.

activationThreshold (θdAP) 15 if the number of active connected synapses on a seg-
ment is at least this threshold, the segment is said to
be active.

predictedSegmentDecrement 0.01 amount by which permanences of synapses are decre-
mented during learning.

Table S1: Adapted parameters of the original TM model used for Fig. 9. Parameter names match those used
in the original simulation code (https://github.com/numenta/htmpapers/tree/master/frontiers/why_neurons_have_
thousands_of_synapses). Gray parameter names are those used in the spiking TM model.
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Fig S1: Sequence prediction performance in the presence of conventional (non-structural) spike-timing dependent
plasticity (STDP). Dependence of the sequence prediction error (A), the false-positive and false-negative rates (B), and the
relative number of active neurons (C) on the number of training episodes for sequence set II. Curves and error bands indicate the
median as well as the 5% and 95% percentiles across an ensemble of 5 different network realizations, respectively. All prediction
performance measures are calculated as a moving average over the last 4 training episodes. In this experiment, structural
STDP is replaced by conventional STDP, i.e., the permanences Pij(t) and Pmax in Eq (1) are replaced by the synaptic weights
JEE,ij(t) and Jmax. The weights JEE,ij are restricted to the interval [Jmin,ij , Jmax], and clipped at the boundaries. The minimal
weights Jmin,ij are randomly and independently drawn from a uniform distribution between J0,min and J0,max. The performance
characteristics shown here are comparable to those obtained with structural STDP (see Fig. 9 in Prediction performance).
Parameters: ∆T = 40 ms, λ+ = 0.43, λ− = 0.006, λh = 0.03, J0,min = 0 ,J0,max = 1, Jmax = 12. See Table 2 for remaining
parameters.
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Fig S2: Prediction performance for a sequence set with recurring first items. Dependence of the sequence prediction
error (A), the false positive frequency, the false negative frequency (B), and the relative number of active neurons (C) on the
number of training episodes for a set of sequences s1 = {B,D,I,C,H}, s2 = {E,D,I,C,F}, s3 = {F,B,C,A,H}, s4 = {G,B,C,A,D},
s5 = {E,C,I,H,A}, s6 = {D,C,I,H,G}. with recurring first items. Curves and error bands indicate the median as well as the 5%
and 95% percentiles across 5 different network realizations, respectively. As a solution to the issue discussed in Limitations
and outlook concerning the recurring of first sequence elements in other sequences or within the same sequence, the dAPs
are externally activated in a random subsets of neurons in the populations representing first elements. Inter-stimulus interval
∆T = 40 ms. All prediction performance measures are calculated as a moving average over the last 4 training episodes.
Parameters: ∆T = 40 ms, λ+ = 0.39, λ− = 0.0057, λh = 0.034. See Table 2 for remaining parameters.
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Fig S3: Effect of the dAP-rate homeostasis on the prediction performance. Dependence of the prediction error (A) and
the overlap in the activation pattern between the neurons representing the sequence element “G” in the context of sequences
{A,D,B,G,H,E} and {F,D,B,G,H,C} (B) on the number of training episodes explored for two values of the homeostasis rate
(λh). Curves and error bands indicate the median as well as the 5% and 95% percentiles across 5 different network realizations,
respectively. Disabling the homeostasis control (λh = 0.0) increases the overlap in the “G” activation pattern, which leads to
a lost of context specificity and hence an increase in the prediction error (see Sequence learning and prediction). Parameters:
∆T = 40 ms, λ+ = 0.08, λ− = 0.0015, λh = 0.014. See Table 2 for remaining parameters.
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Algorithm S1 Algorithmic description of the plasticity model, based on the algorithm proposed in [30].

Update of permanence Pij and synaptic weight JEE,ij at time tkj of the kth spike of presynaptic neuron j:

xj ← get trace of presynaptic neuron j . last update at time tk−1j

Lpost, Zpost ← get lists of postsynaptic spike times and corresponding dAP traces in the interval (tk−1j , tkj ]

for ti, zi in Lpost, Zpost do
if ∆tmin < ti − tk−1j < ∆tmax then

Pij += xj · λ+ · Pmax · exp
(
−(ti − tk−1j + dEE)/τ+

)
. potentiation

Pij += λh · Pmax · (z∗ − zi) . homeostasis
end if

end for

Pij −= yi · λ− · Pmax . depression

if Pij > θP then
JEE,ij ←W . mature synapse

else
JEE,ij ← 0 . immature synapse

end if

xj = xj · exp
(
(tjk−1 − t

j
k)/τ+

)
+ 1.0 . update of presynaptic spike trace

Note: the clipping of the permanence Pij at the boundaries of the interval [Pmin,ij , Pmax] is not included here for
clarity.
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Video S1: Time resolved visualization of the learning dynamics: https://fz-juelich.sciebo.de/s/CoptaUMS6ufRW3t.
Network activity (top) and connectivity (bottom) of the network during one learning episode. Each frame corresponds to a
new training episode. In each learning episode, each of the two sequences {A,D,B,E} and {F,D,B,C} is presented once (black
arrows in the top panel). Top panel: Red dots and blue bars mark spike and dAP times for each neuron. Neurons are sorted
according to stimulus preference (vertical axis). Bottom panel: Network connectivity before learning (left) and during the
current training episode (right). Light gray and black dots represent immature potential and mature connections, respectively,
for each pair of source and target neurons (sorted according to stimulus preference; see Sequence learning and prediction).
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