000902317 001__ 902317
000902317 005__ 20230303092019.0
000902317 0247_ $$2doi$$a10.1007/s10444-021-09911-5
000902317 0247_ $$2Handle$$a2128/29346
000902317 0247_ $$2WOS$$aWOS:000726273700001
000902317 037__ $$aFZJ-2021-04174
000902317 041__ $$aEnglish
000902317 082__ $$a510
000902317 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000902317 245__ $$aThe hot spots conjecture can be false: Some numerical examples
000902317 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000902317 3367_ $$2DRIVER$$aarticle
000902317 3367_ $$2DataCite$$aOutput Types/Journal article
000902317 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638853464_11998
000902317 3367_ $$2BibTeX$$aARTICLE
000902317 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902317 3367_ $$00$$2EndNote$$aJournal Article
000902317 520__ $$aThe hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole.The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than $1+10^{-3}$. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.
000902317 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902317 773__ $$0PERI:(DE-600)2012896-4$$a10.1007/s10444-021-09911-5$$n6$$p85$$tAdvances in computational mathematics$$v47$$x1019-7168$$y2021
000902317 8564_ $$uhttps://juser.fz-juelich.de/record/902317/files/Kleefeld2021_Article_TheHotSpotsConjectureCanBeFals.pdf$$yOpenAccess
000902317 8767_ $$d2021-12-04$$eHybrid-OA$$jDEAL
000902317 909CO $$ooai:juser.fz-juelich.de:902317$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000902317 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000902317 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902317 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV COMPUT MATH : 2019$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-31$$wger
000902317 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902317 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000902317 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000902317 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000902317 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902317 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902317 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902317 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000902317 9141_ $$y2021
000902317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000902317 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902317 920__ $$lyes
000902317 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000902317 9801_ $$aFullTexts
000902317 980__ $$ajournal
000902317 980__ $$aVDB
000902317 980__ $$aUNRESTRICTED
000902317 980__ $$aI:(DE-Juel1)JSC-20090406
000902317 980__ $$aAPC