Home > Publications database > The hot spots conjecture can be false: Some numerical examples > print |
001 | 902317 | ||
005 | 20230303092019.0 | ||
024 | 7 | _ | |2 doi |a 10.1007/s10444-021-09911-5 |
024 | 7 | _ | |2 Handle |a 2128/29346 |
024 | 7 | _ | |a WOS:000726273700001 |2 WOS |
037 | _ | _ | |a FZJ-2021-04174 |
041 | _ | _ | |a English |
082 | _ | _ | |a 510 |
100 | 1 | _ | |0 P:(DE-Juel1)169421 |a Kleefeld, Andreas |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a The hot spots conjecture can be false: Some numerical examples |
260 | _ | _ | |a Dordrecht [u.a.] |b Springer Science + Business Media B.V |c 2021 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1638853464_11998 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole.The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than $1+10^{-3}$. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5112 |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
773 | _ | _ | |0 PERI:(DE-600)2012896-4 |a 10.1007/s10444-021-09911-5 |n 6 |p 85 |t Advances in computational mathematics |v 47 |x 1019-7168 |y 2021 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902317/files/Kleefeld2021_Article_TheHotSpotsConjectureCanBeFals.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:902317 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)169421 |a Forschungszentrum Jülich |b 0 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5112 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2021-01-31 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b ADV COMPUT MATH : 2019 |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)3002 |2 StatID |a DEAL Springer |d 2021-01-31 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2021-01-31 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2021-01-31 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2021-01-31 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|