001     902317
005     20230303092019.0
024 7 _ |2 doi
|a 10.1007/s10444-021-09911-5
024 7 _ |2 Handle
|a 2128/29346
024 7 _ |a WOS:000726273700001
|2 WOS
037 _ _ |a FZJ-2021-04174
041 _ _ |a English
082 _ _ |a 510
100 1 _ |0 P:(DE-Juel1)169421
|a Kleefeld, Andreas
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The hot spots conjecture can be false: Some numerical examples
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1638853464_11998
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole.The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than $1+10^{-3}$. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.
536 _ _ |0 G:(DE-HGF)POF4-5112
|a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
773 _ _ |0 PERI:(DE-600)2012896-4
|a 10.1007/s10444-021-09911-5
|n 6
|p 85
|t Advances in computational mathematics
|v 47
|x 1019-7168
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/902317/files/Kleefeld2021_Article_TheHotSpotsConjectureCanBeFals.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902317
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)169421
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5112
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2021-01-31
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ADV COMPUT MATH : 2019
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)3002
|2 StatID
|a DEAL Springer
|d 2021-01-31
|w ger
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2021-01-31
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2021-01-31
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21