
Adv Comput Math           (2021) 47:85 
https://doi.org/10.1007/s10444-021-09911-5

The hot spots conjecture can be false: some
numerical examples

Andreas Kleefeld1

Received: 27 January 2021 / Accepted: 8 November 2021 /
© The Author(s) 2021

Abstract
The hot spots conjecture is only known to be true for special geometries. This paper
shows numerically that the hot spots conjecture can fail to be true for easy to construct
bounded domains with one hole. The underlying eigenvalue problem for the Laplace
equation with Neumann boundary condition is solved with boundary integral equa-
tions yielding a non-linear eigenvalue problem. Its discretization via the boundary
element collocation method in combination with the algorithm by Beyn yields highly
accurate results both for the first non-zero eigenvalue and its corresponding eigen-
function which is due to superconvergence. Additionally, it can be shown numerically
that the ratio between the maximal/minimal value inside the domain and its maxi-
mal/minimal value on the boundary can be larger than 1 + 10−3. Finally, numerical
examples for easy to construct domains with up to five holes are provided which fail
the hot spots conjecture as well.

Keywords Interior Neumann eigenvalues · Helmholtz equation · Potential theory ·
Boundary integral equations · Numerics
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1 Introduction

The hot spots conjecture has been given in 1974 by Jeffrey Rauch [31] and explic-
itly stated a decade later in Kawohl [17]. Refer also to the paper by Bañuelos &
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Burdzy [6] from 1999. Since then a lot of researchers have worked on this challenging
problem (see Judge & Mondal [16] for a recent overview from 2020).

Before stating it in mathematical terms, we explain it in a simple fashion. Imag-
ine that we have a flat piece of metal D where D is a bounded subset of the
two-dimensional space (Euclidean domain) which can have holes with a sufficiently
smooth boundary. Next, an (almost) arbitrary initial temperature distribution is pro-
vided on D (refer to [6, p. 2]). Assume that the domain is insulated, then the hottest
and coldest spot of D will appear on the boundary when waiting for a long time.

Now, we go into the mathematical detail: That means we have to solve the heat
equation ∂tu = Δu for large t with homogeneous Neumann boundary condition
∂νu = 0 and ‘almost’ arbitrary initial condition in an open connected bounded D with
Lipschitz boundary (see [6, p. 2] and [33] for the definition of a Lipschitz domain).
Refer to Fig. 1 for an example.

Precisely, we have to find the smallest non-trivial eigenvalue of the Laplacian
with homogeneous Neumann boundary condition and the corresponding eigenfunc-
tion. Note that the smallest eigenvalue of the Laplacian with homogeneous Neumann
boundary condition is zero with corresponding eigenfunction u0 = const. Mathe-
matically, we have to find a solution u �= 0 and the smallest k ∈ R>0 such that
the Helmholtz equation Δu + k2u = 0 in D with ∂νu = 0 on the boundary Γ .
All solutions k are called non-trivial interior Neumann eigenvalues and λi = k2

i

will be the ith non-trivial Neumann eigenvalue of the Laplacian. Its corresponding
eigenfunctions are denoted by ui . Further, it is known that the eigenvalues satisfy
0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . when D is a bounded planar domain with Lipschitz
boundary (see for example [14, p. 449] and the references therein, specifically [32]).
If λ1 < λ2 and 〈u(0, · ), u1〉 �= 0, then u(t, x) = C + e−λ1t 〈u(0, · ), u1〉 u1(x)+
lower terms. Note that the first non-trivial eigenvalue can have multiplicity more than
one which means that there can be more than one eigenfunction.

Now, the conjecture can be stated as (refer also to [6, p. 2]): Let D ⊂ R
2 be an

open connected bounded domain with Lipschitz boundary Γ . Then:

Fig. 1 The numerical solution of the heat equation ∂tu = 1
10 Δu and initial condition with standard nor-

mal random numbers and homogeneous Neumann boundary condition for time t1 = 1/200, t2 = 1/10,
t3 = 1/2, and t4 = 2 using h = 1/100 and k = 1/100 (see also [2, p. 11] for more details on the imple-
mentation of the exponential time differencing method). The maximal and minimal value for T4 appear
on the boundary. Note that the solution T4 is approximately representing the first non-zero Neumann
eigenfunction (see [20, Figure 9 (a)])
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C1: For each eigenfunction u1(x) corresponding to λ1 that is not identically zero,
we have

inf
x∈Γ

u1(x) < u1(y) < sup
x∈Γ

u1(x) ∀y ∈ D .

C2: For each eigenfunction u1(x) corresponding to λ1 that is not identically zero,
we have

inf
x∈Γ

u1(x) ≤ u1(y) ≤ sup
x∈Γ

u1(x) ∀y ∈ D .

C3: There exists an eigenfunction u1(x) corresponding to λ1 that is not identically
zero, such that

inf
x∈Γ

u1(x) ≤ u1(y) ≤ sup
x∈Γ

u1(x) ∀y ∈ D .

Here, C1 is the original conjecture of Rauch. The hypothesis has been shown to be
true for some special geometries such as parallelepipeds, balls, rectangles, cylinders
[17], obtuse triangles [6], some convex and non-convex domains with symmetry [6],
wedges [3], lip domains [4], convex domains with two axes of symmetry [15], convex
C1,α domains (0 < α < 1) with one axis of symmetry [30], a certain class of planar
convex domains [28], subequilateral isosceles triangles [29], a certain class of acute
triangles [36], Euclidean triangles [16], and strips on two-dimensional Riemannian
manifolds [24].

It is assumed that the hot spots conjecture is true for arbitrary convex domains,
but a proof is still open. The hot spots conjecture is assumed to be true also for
simply connected bounded non-convex domains, but no successful attempts (neither
theoretically nor numerically) have been made to prove this conjecture or to find a
counter-example.

It has been shown that for some domains with one hole that the hot spots conjec-
ture is true (for example an annulus [17]), but that there are also domains with one or
more holes where the hot spots conjecture is false (see Burdzy [9], Burdzy & Werner
[10], and Bass & Burdzy [7], respectively). For domains on manifolds, we refer the
reader to [13].

The proofs in [7, 9, 10] are very technical and are based on stochastic arguments.
Further, the constructed domain is too complicated in order to provide numerical
results with the boundary element collocation method due to the following three
facts: (i) the boundary of the domain consists of a polygonal part, (ii) the boundary
of the domain consists of polygonal Jordan arcs satisfying certain angular conditions,
and (iii) parts of the domain are very thin.

The only non-published numerical results given so far are for triangles in the Poly-
Math project 7 ‘Hot spots conjecture’ from 2012 to 2013 using the finite element
method.

Further work in the direction of better understanding the conjecture is given for
example by Steinerberger [39]. Related results on graphs are given by Lederman &
Steinerberger [26].
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2 Contribution

It is the goal of this paper to construct ‘simple’ domains with one hole inspired by
Burdzy’s work [9] and show numerically with high precision (due to superconver-
gence) that those domains do not satisfy the hot spots conjecture. For simplicity,
we restrict our attention to domains with sufficiently smooth boundaries (at least of
class C1), but the results could also be extended to domains with Lipschitz bound-
aries (see [20] for more details). The method based on boundary integral equations is
very efficient and its convergence is faster than expected. Additionally, we show the
influence on the location of the hot spots by changing the boundary of the domain in
order to understand this connection. Precisely, we show that symmetry is not needed
to show the failure of the hot spots conjecture, but if the deviation is too large,
then the hot spots conjecture holds. Further, certain assumptions given in Burdzy’s
domain such that ε0 < ε might be removable. It is believed that this work might
help researchers to provide assumptions when the hot spots conjecture will be true
or false for arbitrary bounded simply connected domains which are not necessarily
convex. We show that it is possible to construct domains with one hole such that
the ratio between the maximum/minimum in the interior and its maximum/minimum
on the boundary is larger than 1 + 10−3. Finally, numerical results are given that
show that there exist domains with up to five holes which do not satisfy the hot spots
conjecture as well. The Matlab programs including the produced data are available
at github https://github.com/kleefeld80/hotspots and can be used by any researcher
trying their own geometries and to reproduce the numerical results within this
article.

3 Outline of the paper

In Section 4, we explain the algorithm in order to compute the first non-zero Neu-
mann Laplace eigenvalue and its corresponding eigenfunction for an arbitrary domain
with or without a hole using boundary integral equations resulting in a non-linear
eigenvalue problem. Further, it is shown in detail how to discretize the boundary inte-
gral equations via the boundary element collocation method and how to numerically
solve the non-linear eigenvalue problem. Extensive numerical results are provided
in Section 5 showing the superconvergence and highly accurate results for domains
with one or no hole. Domains are provided that show the failure of the hot spots con-
jecture and further interesting results. The extension to domains with up to five holes
is straightforward and given at the end of this section as well. A short summary and
outlook is given in Section 6.

4 The algorithm

In this section, we explain the algorithm to compute numerically non-trivial inte-
rior Neumann eigenvalues and its corresponding eigenfunction to high accuracy for

https://github.com/kleefeld80/hotspots
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bounded domains with one hole (the extension to more than one hole is straight-
forward) very efficiently. The ingredients are boundary integral equations and its
approximation via boundary element collocation method; that is, a two-dimensional
problem is reduced to a one-dimensional problem. The resulting non-linear eigen-
value problem is solved using complex-valued contour integrals integrating over the
resolvent reducing the non-linear eigenvalue problem to a linear eigenvalue problem
which is possible due to Keldysh’s theorem (see Beyn [8]).

4.1 Notations

We consider a bounded domain D ⊂ R
2 with one hole. The outer boundary Γ1

is assumed to be sufficiently smooth (at least of class C1) that is oriented counter-
clockwise and a sufficiently smooth (at least of class C1) inner boundary Γ2 that
is oriented clockwise. The normal ν1 on the boundary Γ1 is pointing into thev
unbounded exterior E. The normal ν2 on the boundary Γ2 is pointing into the
bounded exterior I . We refer the reader to Fig. 2. The boundary of D is given by
Γ = Γ1 ∪ Γ2 (Γ1 ∩ Γ2 �= ∅).

Note that we also consider bounded domains without a hole. In this case, we have
Γ2 = ∅ and hence Γ = Γ1 and I = ∅.

4.2 Boundary integral equation

The solution to the Helmholtz equation Δu + k2u = 0 (reduced wave equation)
in the domain D for a given wave number k with Im(k) ≥ 0 is given by (see [12,
Theorem 2.1])

u(x) =
∫

Γ

∂ν(y)u(y)· Φk(x, y) − u(y)· ∂ν(y)Φk(x, y) ds(y) , x ∈ D

Fig. 2 Used notations for a
bounded domain with one hole
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which can be written in our notation as

u(x) =
∫

Γ1

∂ν1(y)u(y)· Φk(x, y) − u(y)· ∂ν1(y)Φk(x, y) ds(y)

+
∫

Γ2

∂ν2(y)u(y)· Φk(x, y) − u(y)· ∂ν2(y)Φk(x, y) ds(y) , x ∈ D (1)

where Φk(x, y) = iH(1)
0 (k‖x − y‖)/4, x �= y denotes the fundamental solution of

the Helmholtz equation in two dimensions (see [12, p. 66]). Here, H
(1)
0 denotes the

first-kind Hankel function of order zero. We denote u(y) for y ∈ Γ1 as u1(y) and
similarly u(y) for y ∈ Γ2 as u2(y). Hence, we can write (1) as

u(x) = −
∫

Γ1

u1(y)· ∂ν1(y)Φk(x, y) ds(y)

−
∫

Γ2

u2(y)· ∂ν2(y)Φk(x, y) ds(y) , x ∈ D (2)

where we also used the homogeneous Neumann boundary conditions ∂ν1u = 0 and
∂ν2u = 0. We rewrite (2) as

u(x) = −DLΓ1
k u1(x) − DLΓ2

k u2(x) , x ∈ D (3)

where we used the notation

DLΓi

k ψi(x) =
∫

Γi

ψi(y)· ∂νi(y)Φk(x, y) ds(y) , x ∈ D , i = 1, 2

for the acoustic double layer potential with density ψi (see [12, p. 39]). Assume for
a moment that k is given. The functions u1 and u2 are still unknown. Once we know
them, we can compute the solution u inside the domain of D at any point we want
using (3).

Now, we explain how to obtain those functions u1 and u2 on the boundary. Letting
x ∈ D approach the boundary Γ1 and using the jump relation of the acoustic double
layer operator (see [12, p. 39]), yields the boundary integral equation

u1(x) = −
(

DΓ1→Γ1
k u1(x) − 1

2
u1(x)

)
− DΓ2→Γ1

k u2(x) , x ∈ Γ1 (4)

where we used the notation

D
Γi→Γj

k ψi(x) =
∫

Γi

ψi(y)· ∂νi(y)Φk(x, y) ds(y) , x ∈ Γj , i, j = 1, 2

for the double layer operator (see [12, p. 41]).
Similarly, we obtain for x ∈ D approaching the boundary Γ2 and using the jump

relation for the double layer operator

u2(x) = −DΓ1→Γ2
k u1(x) −

(
DΓ2→Γ2

k u2(x) − 1

2
u2(x)

)
, x ∈ Γ2 . (5)
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We can rewrite (4) and (5) as a 2 × 2 system of boundary integral equations in the
form ⎛

⎜⎜⎜⎜⎝
1

2

IB︷ ︸︸ ︷(
I 0
0 I

)
+

K(k)︷ ︸︸ ︷(
DΓ1→Γ1

k DΓ2→Γ1
k

DΓ1→Γ2
k DΓ2→Γ2

k

)
⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M(k)

(
u1
u2

)

︸ ︷︷ ︸
u

=
(

0
0

)
on Γ (6)

where I and IB denotes the identity and the 2×2 block identity operator, respectively.
Hence, we have to numerically solve the non-linear eigenvalue problem (6) written as
M(k)u = 0 to find the smallest non-trivial (real) eigenvalue k and the corresponding
eigenfunction u. Then, we can numerically evaluate (3) to compute the eigenfunction
at any point in the interior we want. As in [19, p. 188], we can argue that the compact
operator K(k) maps from H−1/2(Γ1) × H−1/2(Γ2) to H1/2(Γ1) × H1/2(Γ2). Here,
Hs(Γ ) denotes a Sobolev space of order s ∈ R on the domain Γ which are defined
via Bessel potentials (see [27, pp. 75–76] for more details). The operator M(k) =
1
2 IB + K(k) is Fredholm of index zero for k ∈ C\R≤0 and therefore the theory of
eigenvalue problems for holomorphic Fredholm operator-valued functions applies to
M(k).

4.3 Discretization

In this section, we explain how to discretize (6) using quadratic interpolation of the
boundary, but using piecewise quadratic interpolation (similar as in [21] for the 3D
case) instead of quadratic interpolation for the unknown u on each of the nf boundary
elements which ultimately leads to the non-linear eigenvalue

M(k)u = 0 (7)

where the matrix is of size 3· 2· nf × 3· 2· nf . The size of the matrix is slightly larger
than the one given in Kleefeld [19], but it has the advantage that no singular integral
has to be evaluated numerically, since we can use a similar singularity subtraction
technique as explained in Kleefeld and Lin [22, pp. A1720–A1721] and the conver-
gence rate is slightly higher. The details are about to follow for a domain without a
hole for simplicity. In this case, we have to solve a boundary integral equation of the
second kind of the form

1

2
u1(x) +

∫
Γ1

u1(y)∂ν1(y)Φk(x, y) ds(y) = 0 , x ∈ Γ1 . (8)

First, we subdivide the boundary Γ1 into nf pieces denoted by Δj with j =
1, . . . , nf . A subdivision into four pieces is shown in Fig. 3 for the unit circle.

Then equation (8) can be equivalently written as

1

2
u1(x) +

nf∑
j=1

∫
Δj

u1(y)∂ν1(y)Φk(x, y) ds(y) = 0 , x ∈ Γ1 .
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Fig. 3 Subdivision of the given
boundary Γ1 into four pieces
Δ1, Δ2, Δ3, and Δ4

For each j there exists a bijective map mj which maps from the standard interval
σ = [0, 1] to Δj . Then, we can apply a simple change of variables to each integral
over Δj giving

1

2
u1(x) +

nf∑
j=1

∫
σ

u1(mj (s))∂ν1(mj (s))Φk(x, mj (s))Jj (s) ds(s) = 0 , x ∈ Γ1

with the Jacobian given by Jj (s) = ‖∂smj (s)‖. In most cases, we can explicitly
write down this map. However, we approximate each mj(s) by a quadratic interpola-
tion polynomial mj(s) ≈ m̃j (s) = ∑3

i=1 v((i−1)+2(j−1)) mod (2nf )+1Li(s) where the
Lagrange basis functions are

L1(s) = u· (1 − 2s) , L2(s) = 4s· u , and L3(s) = s· (2s − 1)

with u = 1 − s. Here, γ mod δ = γ − � γ
δ
�· δ with �· � the floor function. The nodes

v� (� = 1, . . . , 2nf ) are the given vertices and midpoints of the nf faces. We refer
the reader to Fig. 4 for an example with four faces and eight nodes (four vertices and
midpoints, respectively).

An example how the approximation of Δ1 via a quadratic interpolation polynomial
using two vertices and the midpoint looks like is shown in Fig. 5. Next, we define
the ‘collocation nodes’ ṽj,k by ṽj,k = m̃j (qk) for j = 1, . . . , nf and for k = 1, 2, 3
where q̃1 = α, q̃2 = 1/2, and q̃3 = 1 − α with 0 < α < 1/2 a given and fixed
constant. This ensures that the collocation nodes are always lying within a piece of
the boundary and at those points the interior solid angle is 1/2. For a specific choice
of α the overall convergence rate can be improved. The first three collocation nodes
on the approximated boundary for the unit circle using α = (1 −√

3/5)/2 are shown
in Fig. 6.

The unknown function u1(m̃j (s)) is approximated on each of the j pieces by a
quadratic interpolation polynomial that is of the form

∑3
k=1 u1(m̃j (qk))L̃k(s) which



Adv Comput Math           (2021) 47:85 Page 9 of 31   85 

Fig. 4 The eight nodes
v1, . . . , v8, the four vertices v1,
v3, v5, and v7 (marked with ×),
and the four midpoints v2, v4, v6,
and v8 (marked with ◦) for the
four faces Δ1, Δ2, Δ3, and Δ4

Fig. 5 The approximation of the
first part of the boundary Δ1
(solid line) via a quadratic
interpolation polynomial using
two vertices and the midpoint
(dashed line)

Fig. 6 The first three
collocation nodes (solid
triangles) on the first part of the
approximated boundary (dashed
line) for the unit circle using
α = (1 − √

3/5)/2. The exact
boundary is shown with a solid
line including the two vertices
marked by a cross
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can be written as
∑3

k=1 u1(̃vj,k)L̃k(s) where the Lagrange basis functions are given
by

L̃1(s) = u − α

1 − 2α

1 − 2s

1 − 2α
, L̃2(s) = 4

s − α

1 − 2α

u − α

1 − 2α
, L̃3(s) = s − α

1 − 2α

2s − 1

1 − 2α

with u = 1 − s. We obtain

1

2
u1(x) +

nf∑
j=1

3∑
k=1

∫
σ

∂ν1(m̃j (s))Φk(x, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s)u1(̃vj,k) = r(x)

with r(x) the residue which is due to the different approximations. We set r(̃vi,�) = 0
and obtain the linear system of size 3nf × 3nf

1

2
u1(̃vi,�) +

nf∑
j=1

3∑
k=1

ai,�,j,ku1(̃vj,k) = 0

with the resulting integrals

ai,�,j,k =
∫

σ

∂ν1(m̃j (s))Φk(̃vi,�, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s) (9)

which will be approximated by the adaptive Gauß-Kronrod quadrature (see [35]).
This can be written abstractly as M(k)u = 0. Note that the integrand of the integral
of the right-hand side (9) can easily be written down as

ikH
(1)
1 (kr)

4r
(a· n1 + b· n2) L̃k(s)

with H
(1)
1 the first-kind Hankel function of order one and with

a = [̃
vi,� − m̃j (s)

]
1 , b = [̃

vi,� − m̃j (s)
]

2 , r =
√

a2 + b2 ,

n1 = [
∂sm̃j (s)

]
2 , n2 = − [

∂sm̃j (s)
]

1 .

Note that the Jacobian cancels out. A word has to be spent on the following issue:
When P �= Q with P = ṽi,� and Q = m̃j (s), then the integrand of the integral of the
right-hand side (9) is smooth. However, for the case P = Q a singularity within the
integral of the right-hand side (9) is present. In this case, we can use the singularity
subtraction method to rewrite the singular integral in the following form∫

σ

∂ν1(m̃j (s))Φk(̃vi,�, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s)

=
∫

σ

∂ν1(m̃j (s))

(
Φk(̃vi,�, m̃j (s)) − Φ0(̃vi,�, m̃j (s))

) ‖∂sm̃j (s)‖L̃k(s) ds(s)

+
∫

σ

∂ν1(m̃j (s))Φ0(̃vi,�, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s) = I smooth
i,� + I

sing
i,�
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where Φ0(P, Q) = − log(|P − Q|)/(2π) is the fundamental solution of the Laplace
equation. The integral I smooth

i,� has a smooth kernel (no singularity present) and is
converging rapidly to zero when increasing the number of faces (independent of the
wave number k). Hence, we directly set I smooth

i,� = 0. The integral I
sing
i,� (a singularity

is present) can be rewritten as a sum of integrals without any singularity. This is due
to the fact that we have DΓ1→Γ1

0 ψ (x) = −1/2 with ψ = 1, ∀x ∈ Γ1 (see [34, p.
363]) and hence, we approximately use for all i, �:

nf∑
j=1

3∑
k=1

∫
σ

∂ν1(m̃j (s))Φ0(̃vi,�, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s) ≈ −1

2

(that is, the row sum of the matrix M(0) obtained from the discretization of the double
layer for the Laplace equation shall be −1/2) and hence, we can compute I

sing
i,� as

I
sing
i,� ≈ −1

2

−
nf∑
j=1

3∑
k=1

(j,k)�=(i,�)

∫
σ

∂ν1(m̃j (s))Φ0(̃vi,�, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s) . (10)

Each of the integrands within the integrals of the right-hand side (10) are smooth and
can be computed with the previously mentioned Gauss-Kronrod quadrature.

Finally, if we use a domain with a hole, we obtain the system of size m × m =
2· 3· nf × 2· 3· nf when including the boundary Γ2 and the unknown function u2.
Written abstractly we obtain the non-linear eigenvalue problem

M(k)u = 0 (11)

Of course, the extension to more than one hole is obvious. In this case, the matrix
M(k) within (11) will be of size (q + 1)· 3· nf × (q + 1)· 3· nf where q denotes the
number of holes within the domain.

4.4 Non-linear eigenvalue problem

The non-linear eigenvalue problem (11) is solved with the Beyn algorithm [8]. It is
based on complex-valued contour integrals integrating over the resolvent reducing
the non-linear eigenvalue to a linear one (of very small size) which can be achieved
by Keldysh’s theorem. Precisely, a user-specified 2π -periodic contour γ of class C1

within the complex plane has to be given. We need a contour that is enclosing a part
of the real line where the smallest non-zero eigenvalue is expected. We usually use
a circle with radius R and center (μ, 0) (in order to exclude the eigenvalue zero,
we choose μ > R). In this case, we have ϕ(t) = μ + R cos(t) + iR sin(t) which
satisfies ϕ ∈ C∞. The number of eigenvalues including their multiplicity within the
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contour γ is denoted by n(γ ). With the randomly chosen matrix V̂ ∈ C
m×� with

m � � ≥ n(γ ) the two contour integrals of the form

A0 = 1

2π i

∫
γ

M−1(k)V̂ ds(k) ,

A1 = 1

2π i

∫
γ

kM−1(k)V̂ ds(k)

over the given contour γ are now rewritten as

A0 = 1

2π i

∫ 2π

0
M−1(ϕ(t))V̂ϕ′(t) ds(t) ,

A1 = 1

2π i

∫ 2π

0
ϕ(t)M−1(ϕ(t))V̂ϕ′(t) ds(t)

and approximated by the trapezoidal rule yielding

A0,N = 1

iN

N−1∑
j=0

M−1(ϕ(tj ))V̂ϕ′(tj ),

A1,N = 1

iN

N−1∑
j=0

ϕ(tj )M−1(ϕ(tj ))V̂ϕ′(tj ) ,

where the parameter N is given and the equidistant nodes are tj = 2πj/N , j =
0, . . . , N . Note that the choice N = 24 is usually sufficient, which is due to the
exponential convergence rate ([8, Theorem 4.7]). The next step is the computation of
a singular value decomposition of A0,N = V�WH with V ∈ C

m×�, � ∈ C
�×�, and

W ∈ C
�×�. Then, we perform a rank test for the matrix � = diag(σ1, σ2, . . . , σ�)

for a given tolerance ε = tolrank (usually ε = 10−4). That is, find n(γ ) such that
σ1 ≥ . . . ≥ σn(γ ) > ε > σn(γ )+1 ≥ . . . ≥ σ�. Define V0 = (Vij )1≤i≤m,1≤j≤n(γ ),
�0 = (�ij )1≤i≤n(γ ),1≤j≤n(γ ), and W0 = (Wij )1≤i≤�,1≤j≤n(γ )) and compute the
n(γ ) eigenvalues ki and eigenvectors si of the matrix B = VH

0 A1,NW0�
−1
0 ∈

C
n(γ )×n(γ ). The ith non-linear eigenvector ui is given by V0si .
We refer the reader to [8, p. 3849] for more details on the implementation of

this algorithm and the detailed analysis behind it including the proof of exponential
convergence.

4.5 Eigenfunction

After we obtain the smallest non-zero eigenvalue k and the corresponding function
u on the boundary from (11), we insert this into (3) to compute the eigenfunction
inside the domain at any point we want. The discretization of the integrals is done as
explained previously. Precisely, we have

u(x) = −DLΓ1
k u1(x) − DLΓ2

k u2(x) ≈ −
nf∑
j=1

3∑
k=1

(
âj,ku1(̃vj,k) + b̂j,ku2(̃vj,k)

)
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with

âj,k =
∫

σ

∂ν1(m̃j (s))Φk(x, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s)

b̂j,k =
∫

σ

∂ν2(m̃j (s))Φk(x, m̃j (s))‖∂sm̃j (s)‖L̃k(s) ds(s)

for an arbitrary point x ∈ D. In fact, we can find maximal or minimal values by
maximizing or minimizing this function. This is done by the Nelder-Mead algorithm
(in Matlab by the fminsearch function), refer also to [25].

4.6 Superconvergence

The convergence of the method is out of the scope of this paper. Standard conver-
gence results are available for boundary integral equations of the second kind using
boundary element collocation method under suitable assumptions on the boundary
(for example the boundary is at least of class C2 to ensure compactness of the integral
operator) and the boundary function for the Laplace equation (see [5, Section 9.2]).
Quadratic approximations of the boundary and the boundary function yield cubic
convergence (refer to [5, Theorem 9.2.1] for the Laplace equation and [21, Theorem
3.1] for the Helmholtz equation). In fact, the convergence results can be improved as
shown in [5, Theorem 9.2.2] and [21, Theorem 4.10] for the three-dimensional case.
However, the exact theoretical convergence rate for the eigenvalue is not known. It
is expected that it is at least of order three, but we see later in the numerical results
that it is better than three (for a sufficiently smooth boundary). Future work in this
direction could be done using the ideas of Steinbach & Unger [38].

Finally, note that a specific choice of 0 < α < 1/2 can improve the overall
convergence rate for smooth boundaries (see [21, p. 121 & p. 139]), but since we are
happy with the cubic convergence rate with the pick α = (1 − √

3/5)/2 (a Gauss-
quadrature point within the interval [0, 1]), we have not investigated this any further.

5 Numerical results

5.1 Simply connected convex domains

First, we check the correctness and the convergence of the underlying method for
the unit circle. It is known that the first non-trivial interior Neumann eigenvalue is
the smallest positive root of J ′

1 (the first derivative of the first-kind Bessel function
of order one). The root can be computed to arbitrary precision with Maple with the
command
restart; Digits:=16: fsolve(diff(BesselJ(1,x),x),x=1..2);

It is approximately given by

1.841 183 781 340 659 . (12)

For the Beyn algorithm we use the parameters N = 24, R = 1/2, μ = 2,
and � = 10 for various number of faces nf and number of collocation points



   85 Page 14 of 31 Adv Comput Math           (2021) 47:85 

nc. With the definition of the absolute error E
(i)
nf

of the ith eigenvalue approxima-

tion, we compute the error of the first non-trivial eigenvalue E
(1)
nf

of our method
compared with (12). Additionally, we define the estimated order of convergence
EOC(i) = log(E

(i)
nf

/E
(i)
2·nf

)/ log(2) of the ith eigenvalue approximation and compute

EOC(1). As we can see in Table 1, the first non-trivial Neumann eigenvalue can be
made accurate up to eleven digits.

The estimated order of convergence is at least of order three. Note that we can go
beyond eleven digits accuracy by further increasing nf , but it is not necessary here.

Next, we show the influence of the algebraic multiplicity of the eigenvalue. The
first non-trivial interior Neumann eigenvalue for the unit circle has algebraic multi-
plicity two. The same is true for the second non-trivial interior Neumann eigenvalue.
It is obtained by computing the first positive root of J ′

2 approximately given by
3.054 236 928 227 140. The third non-trivial interior Neumann eigenvalue is simple
and obtained by computing the second root of J ′

0 given by 3.831 705 970 207 512.
Note that the first root of J ′

0 is zero which corresponds to the interior Neumann eigen-
value zero with a corresponding eigenfunction which is a constant. In Table 2, we
show the absolute error and the estimated order of convergence for the second and
third non-zero interior Neumann eigenvalue for a unit circle where we used different
numbers of faces and different numbers of collocation points using the parameters
N = 24, R = 1/2, μ = 3, and � = 10.

Again, we notice the estimated order of convergence of at least order three and
that we can achieve the order and the high accuracy regardless of the algebraic
multiplicity of the eigenvalue.

We define �κ = [−κ, κ] × [−κ, κ] with κ ∈ R>0. In general, we use a resolution
of 100 × 100 equidistantly distributed points, here within �1.1 and compute for each
point that is located inside the unit circle the value of the eigenfunction. In Fig. 7, we
show the eigenfunctions corresponding to the first three non-trivial interior Neumann
eigenvalues as a contour plot with 40 contour lines. We also include the location of the
maximum and minimum of the eigenfunction that corresponds to the first non-trivial
interior Neumann eigenvalue as a red and blue dot, respectively.

Table 1 Absolute error and
estimated order of convergence
of the first non-trivial interior
Neumann eigenvalue for a unit
circle using different numbers of
faces and collocation points

nf nc abs. error E
(1)
nf

EOC(1)

5 15 5.8503−3

10 30 4.7818−4 3.6129

20 60 4.5775−5 3.3849

40 120 5.0168−6 3.1897

80 240 5.9173−7 3.0838

160 480 7.2096−8 3.0369

320 960 8.9069−9 3.0169

640 1920 1.1072−9 3.0080

1280 3840 1.3803−10 3.0039
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Table 2 Absolute error and estimated order of convergence of the second and third non-trivial interior
Neumann eigenvalue for a unit circle using different numbers of faces and collocation points

nf nc abs. error E
(2)
nf

EOC(2) abs. error E
(3)
nf

EOC(3)

5 15 1.2817−2 1.6335−2

10 30 1.1543−3 3.4729 1.3081−3 3.6424

20 60 1.2187−4 3.2437 1.3133−4 3.3162

40 120 1.4173−5 3.1041 1.5147−5 3.1161

80 240 1.7199−6 3.0428 1.8416−6 3.0401

160 480 2.1229−7 3.0182 2.2788−7 3.0146

320 960 2.6386−8 3.0082 2.8373−8 3.0057

640 1920 3.2895−9 3.0038 3.5406−9 3.0024

1280 3840 4.1066−10 3.0018 4.4225−10 3.0011

We can see that the extreme values for the first non-trivial interior Neumann
eigenfunction of the unit circle are obtained on the boundary as it is conjectured for
simply connected convex domains. Note that the second eigenfunction correspond-
ing to the first non-trivial interior Neumann eigenvalue is a rotated version of the first
eigenfunction.

We also show the eigenfunctions including the maximal and minimal value for
a variety of other simply connected convex domains in Fig. 8 such as an ellipse
and two deformed ellipses. The boundary of the ellipse is given in parametric form
as (6 cos(t)/5, sin(t))� with t ∈ [0, 2π). We use the parameters as before for
Beyn’s algorithm except μ = 1.5 and consider �1.3. The first non-trivial interior
Neumann eigenvalue is given by 1.544 422 which has algebraic multiplicity one.
The parametrization of the deformed ellipse’s boundary is given by (0.75 cos(t) +
ε cos(2t), sin(t))� with t ∈ [0, 2π), where the parameter ε is chosen to be 0.1 and
0.2 (see [11, 23] for its first and second use). Using nf = 320, the first non-trivial
interior Neumann eigenvalue of the deformed ellipses with ε = 0.1 and ε = 0.2 are
1.849 064 and 1.819 478, respectively. Again, they both have algebraic multiplicity
one.

Fig. 7 The first three eigenfunctions corresponding to the first three non-trivial interior Neumann
eigenvalues 1.841 184, 3.054 237, and 3.831 706 for the unit circle
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Fig. 8 The eigenfunctions corresponding to the first non-trivial interior Neumann eigenvalues for the
ellipse and two deformed ellipses with ε = 0.1 and ε = 0.2 with corresponding non-trivial interior
Neumann eigenvalue 1.544 422, 1.849 064, and 1.819 478

It is generally believed that the hot spots conjecture for general simply connected
convex domains is true, but a general proof is still open. In all our numerical results
for simply connected convex domains, we obtain the extrema on the boundary as one
can see in Fig. 8.

5.2 Simply connected non-convex domains

No simply connected non-convex domain has yet been found (neither theoretically
nor numerically) that fails the hot spots conjecture. Now, we concentrate on this
case. We consider the deformed ellipse from the previous section with ε = 0.3,
the peanut-shaped domain and the apple-shaped domain. The boundaries of the last

two domains are given parametrically as
√

cos2(t) + sin2(t)/4 (cos(t), sin(t))� and
0.5+0.4 cos(t)+0.1 sin(2t)

1+0.7 cos(t) (cos(t), sin(t))� with t ∈ [0, 2π), respectively (see [41] for its
use). We use the parameters as before with μ = 1.5 for the first two domains and
μ = 3 for the apple-shaped domain. Using nf = 320, the first non-trivial interior
Neumann eigenvalue for the three domains are 1.770 906, 1.721 292, and 2.761 274,
respectively. They are all simple. As we can see in Fig. 9, the maximum and minimum
are obtained on the boundary of the domains using �1.3.

Interesting domains have been constructed by Kleefeld (refer to [19] for more
details) and extended by Abele and Kleefeld [1] for the purpose of finding new
shape optimizers for certain non-trivial Neumann eigenvalues. The boundaries of the
domains considered in those articles are given by ‘generalized’ equipotentials which
are implicit curves. The simplest equipotential is of the form

∑m
i=1 ‖x − Pi‖−1 = c

where the points Pi ∈ R
2, i = 1, . . . , m, the number of points m, and the parameter

c are given. All x ∈ R
2 that satisfy the equation describe the boundary of the domain.

We use this idea to construct three non-symmetric and non-convex simply connected
domains, say D1, D2, and D3. For the boundary of the domain D1, we use the param-
eter m = 3 and c = 14/5. The three points are (−1, 1/2)�, (1, 1/3)�, and (0, 4/5)�.
Using μ = 1, we obtain the first non-trivial interior Neumann eigenvalue 1.051 055.
For the plot of the eigenfunction, we use �1.6. The boundary of the second domain is
constructed through the use of m = 4 and c = 7/2 and the points are (−5/4, 1/10)�,
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Fig. 9 The eigenfunctions corresponding to the first non-trivial interior Neumann eigenvalues for the
deformed ellipse with ε = 0.3, the peanut-shaped, and the apple-shaped domain with corresponding
non-trivial interior Neumann eigenvalue 1.770 906, 1.721 292, and 2.761 274

(5/4, 0)�, (1/10, −1)�, and (0, 1)�. We obtain the first non-trivial interior Neumann
eigenvalue 1.086 037 when using μ = 1 and the eigenfunction using �1.8. The third
domain’s boundary is constructed using m = 5 and c = 18/5 and the points are
(−1, 1/2)�, (1, 1/2)�, (0, −1)�, (3/2, −1)�, and (−3/2, −6/5)�. Using μ = 1,
we obtain the first non-trivial interior Neumann eigenvalue 0.861 858. A plot of the
corresponding eigenfunction is shown within �2.1.

All three eigenfunctions including the location of the maximal and minimal value
are shown in Fig. 10.

As we can see again, the extreme values are obtained on the boundary.
In sum, we are not able to construct a simply connected non-convex domain that

fails the hot spots conjecture. Next, we concentrate on non-simply connected domains.

5.3 Non-simply connected domains

Now, we consider an annulus with inner radius R1 = 1/2 and outer radius R2 = 2.
For this domain, we can again compute a reference solution to arbitrary precision.
The non-trivial interior Neumann eigenvalues are obtained through the roots of

J ′
n(R1x)Y ′

n(R2x) − J ′
n(R2x)Y ′

n(R1x) = 0 , n = 0, 1, 2, . . .

Fig. 10 The eigenfunctions corresponding to the first non-trivial interior Neumann eigenvalues for
domains D1, D2, and D3 with corresponding non-trivial interior Neumann eigenvalue 1.051 055,
1.086 037, and 0.861 858
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where Y ′
n denotes the derivative of the second-kind Bessel function of order n. (see

for example [40, Equation 4.16]). The first two roots are obtained with the Maple
command

restart; Digits:=16:

Jp:=unapply(diff(BesselJ(1,x),x),x):

Yp:=unapply(diff(BesselY(1,x),x),x):

fsolve(Jp(x/2)*Yp(2*x)-Jp(2*x)*Yp(x/2),x=1);

Jp:=unapply(diff(BesselJ(2,x),x),x):

Yp:=unapply(diff(BesselY(2,x),x),x):

fsolve(Jp(x/2)*Yp(2*x)-Jp(2*x)*Yp(x/2),x=1);

The two smallest roots are approximately given by

0.822 252 688 623 884 and 1.504 647 782 189 479 ,

respectively. They both have multiplicity two. Again, we show in Table 3 that our
method is able to achieve ten digits accuracy with a cubic convergence order for the
first two non-trivial interior Neumann eigenvalues for an annulus using the parameter
μ = 6/5 for various number of faces. Note that twice the number of faces is needed
due to the need of two boundary curves.

In Fig. 11 we show the first three eigenfunctions for �2.1 corresponding to the
non-trivial interior Neumann eigenvalues 0.822 253, 1.504 648, and 2.096 773. To
compute the third eigenvalue which has multiplicity two, we used μ = 2. For the
first eigenfunction plot, we also added the extreme values.

We can see that the extreme values are again obtained on the boundary of the
annulus. Now, we consider more complex non-simply connected domains. The first
domain A1 is given by a unit circle centered at the origin removing an ellipse centered
at (−0.5, −0.3)� with semi-axis 0.15 and 0.35. We obtain the first non-trivial inte-
rior Neumann eigenvalue 1.662 873 and the eigenfunction within �1.1. The second
domain A2 is given by D3 removing an ellipse centered at (−0.1, −0.3)� with semi-
axis 0.15 and 0.35. We get the first non-trivial interior Neumann eigenvalue 1.651 571
and the eigenfunction within �1.1. The third domain A3 is given by D3 removing
a 90 degree counter-clockwise rotated version of D3 scaled by 1/2. We obtain the

Table 3 Absolute error and estimated order of convergence of the first and second non-trivial interior
Neumann eigenvalue for an annulus with R1 = 1/2 and R2 = 2 using different numbers of faces and
collocation points

2nf 2nc Absolute error E
(1)
nf

EOC(1) Absolute error E
(2)
nf

EOC(2)

10 30 2.4700−3 6.1268−3

20 60 1.9490−4 3.6637 5.4708−4 3.4853

40 120 1.7741−5 3.4575 5.7347−5 3.2540

80 240 1.8725−6 3.2441 6.6443−6 3.1095

160 480 2.1655−7 3.1122 8.0539−7 3.0443

320 960 2.6159−8 3.0493 9.9900−8 3.0111

640 1920 3.2351−9 3.0154 1.2988−8 2.9433
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Fig. 11 The first three eigenfunctions corresponding to the first three non-trivial interior Neumann
eigenvalues 0.822 253, 1.504 648, and 2.096 773 for an annulus

first non-trivial interior Neumann eigenvalue 1.171 590 and the eigenfunction within
�1.1. We used the parameter μ = 1.5 for all three domains. The eigenfunctions for
A1, A2, and A3 including the extreme values are illustrated in Fig. 12.

As we can see again, the extreme values are obtained on the boundary. We also
tried many other similar geometries with different kinds of holes and obtained similar
results. The hot spots conjecture seems to hold.

Finally, we concentrate on a more complex geometry inspired by the work of
Burdzy [9, Figure 1] as shown in Fig. 13. We shortly explain how he constructed the
domain D with one hole that does not satisfy the hot spots conjecture. For simplicity,
we illustrate only the construction of a quarter of the domain, say D1/4. Let ε ∈
(0, 1/4) and ε0 ∈ (0, ε). Define the points (0, −ε)�, (1, 2ε)�, (2, ε0)

�, (2, −ε0)
�,

(1, −2ε)�, and (0, −ε)�. Next, construct the convex polygon A1 with those points.
Now, define the polygonal Jordan arc C1 lying inside the domain

(
B((2, −1)�, 1 + 2ε0)\B((2, −1)�, 1 + ε0/2)

)
∩ {(x, y)� : x ≥ 2 , y ≥ −1}

with endpoints (2, ε0)
� and (3 + ε0, −1)� where B((x0, y0)

�, r) denotes the open
disk centered at the location (x0, y0)

� and radius r satisfying for any line segment
x, y, y, z ⊂ C1 the condition |∠(y −x, z−y)| ≤ ε0. Likewise, the polygonal Jordan

Fig. 12 The eigenfunctions corresponding to the first non-trivial interior Neumann eigenvalues 1.662 873,
1.651 571, and 1.171 590 for the domains A1, A2, and A3
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Fig. 13 A quarter of the domain
constructed by Burdzy
[9, Figure 1] using the
parameters ε = 0.2 and ε0 = 0.1

arc C2 is defined inside(
B((2, −1)�, 1 − ε0/2)\B((2, −1)�, 1 − 2ε0)

)
∩ {(x, y)� : x ≥ 2 , y ≥ −1}

with endpoints (2, −ε0)
� and (3 − ε0, −1)�. The boundary of the domain A2 is

given by C1, C2, and the two line segments connecting the two points (2, ε0)
� and

(2, −ε0)
� and the two points (3+ε0, −1)�, (3−ε0, −1)�, respectively. The complete

domain D is now obtained by mirroring D1/4 = A1 ∪ A2 along the y-axis (x = 0)
followed by mirroring along y = −1.

Our method cannot be applied to this domain due to three reasons: The domain
is of polygonal structure, it contains polygonal Jordan arcs satisfying certain angular
conditions, and it is very thin.

Therefore, we construct less complex domains (inspired by Burdzy’s domain) that
fail the hot spots conjecture and numerically show the failure. Further, we show the
exact location of the extreme values.

The ‘teether’ domain depicted in Fig. 14 is constructed as follows:
Let E(x, y, a, b, t1, t2) be the ellipse centered at (x, y)� with semi-axis a and

b constructed for φ ∈ [t1, t2) using the parametrization (x + a cos(φ), y + b sin
(φ))�. Note that we also allow t1 > t2 to guarantee the needed orientation of the
curve. The first half of the outer boundary is given by the pieces E(4, 4, 1, 1, −

Fig. 14 A more advanced
bounded domain with a hole
inspired by the work of Burdzy
[9, Figure 1]



Adv Comput Math           (2021) 47:85 Page 21 of 31   85 

π/2, −π), E(2, 4, 1, 1, 0, π), E(0, 4, 1, 1/2, 0, −π), E(−2, 4, 1, 1, 0, π), E(−4,

4, 1, 1, 0, −π/2), and E(−4, 0, 3, 3, π/2, 3π/2). Rotating this half by π yields the
second half of the outer boundary. The first half of the inner boundary is given by
the pieces E(4, 3/2, 1, 1, π/2, π), E(2, 3/2, 1, 1, 0, −π), E(0, 3/2, 1, 1/2, 0, π),
E(−2, 3/2, 1, 1, 0, −π), E(−4, 3/2, 1, 1, 0, π/2), and E(−4, 0, 5/2, 5/2, π/2,

3π/2). Rotating this half by π yields the second half of the inner boundary. Next, the
orientation of the inner boundary is reversed. Finally, all coordinates of the boundary
are multiplied with 1/4. This yields our ‘teether’ domain C1.

We use the parameter μ = 0.8, � = 20 and �1.8. We obtain the first non-trivial
interior Neumann eigenvalue 0.370 708. The corresponding eigenfunction includ-
ing is extreme values is shown in Fig. 15. Since the extreme values lie in very flat
plateaus, we additionally show zoomed versions around the extreme values to better
see that they are located inside the domain.

This shows that we are able to show numerically that there exists a bounded
domain with one hole that fails the hot spots conjecture.

Next, we investigate some possible conditions needed to construct an example
that fails the hot spots conjecture. With one bump it was not possible to obtain the
extreme values inside the domain, say C2. We use the previous example, and remove
one of the bump and its mirror version in the upper and lower part of the teether
domain. We obtain the first non-trivial interior Neumann eigenvalue 0.534 605 and
the corresponding eigenfunction within �1.6.

As we can see again in Fig. 16, the values inside the bump area are very close to
each other. The extreme values are attained on the boundary.

Right now, the proposed domain C1 has two lines of symmetry as the domain by
Burdzy does. Now, we break the symmetry and show that we are still able to obtain a
counter-example of the hot spots conjecture. We add a small amount of ρ = 0.0250 to
the semi-axis of the ellipse that describes the upper left bump and obtain the domain
C3. The first non-trivial interior Neumann eigenvalue is 0.370 054.

As we can see in Fig. 17, the location of the hot spots of the eigenfunction within
�1.8 are slightly changed, too, but they remain inside of C3. Increasing the value from
ρ = 0.025 to ρ = 0.125 will shift the maximal value from inside the domain C̃3 to
the boundary while the minimum stays inside the domain. We obtain the eigenvalue
0.367 496. The question remains for which parameter ρ between 0.025 and 0.125

Fig. 15 The eigenfunction and its zoomed version around the maximum and minimum corresponding to
the first non-trivial interior Neumann eigenvalue 0.370 708 for the teether domain C1



   85 Page 22 of 31 Adv Comput Math           (2021) 47:85 

Fig. 16 The eigenfunction and its zoomed version around the maximum corresponding to the first non-
trivial interior Neumann eigenvalue 0.534 605 for the domain C2

will there be the change from the failure of the hot spots conjecture to its validity.
The answer is reported in Table 4.

The switch between failure and validity is obtain for ρ between 0.1 and 0.1125.
We also show in Fig. 18 that the hot spots conjecture is true when we cut the

upper middle connector of the teether domain C1. Precisely, the width of the cut is
approximately 0.049. The maximum and minimum are located at the centers of the
cutting lines, respectively.

Now, we show what happens if we make the gap between E(0, 4, 1, 1/2, 0, −π)

and E(0, 3/2, 1, 1/2, 0, π) and its mirror counterpart smaller. We use
E(0, 4, 1, 1, 0, −π) and E(0, 3/2, 1, 1, 0, π) instead to obtain C4. We obtain the
first non-trivial interior Neumann eigenvalue 0.384 715 and its corresponding
eigenfunction within �1.8 shown in Fig. 19.

Fig. 17 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.370 054
and 0.367 496 for the domains C3 and C̃3
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Table 4 The eigenvalue and
failure depending on the
parameter ρ for variants of C1

ρ Eigenvalue Failure of HSC

0.0125 0.370 379 yes

0.0250 0.370 054 yes

0.0375 0.369 730 yes

0.0500 0.369 407 yes

0.0625 0.369 086 yes

0.0750 0.368 765 yes

0.0875 0.368 446 yes

0.1000 0.368 128 yes

0.1125 0.367 812 no

0.1250 0.367 496 no

Again the hot spots conjecture fails. Therefore, this example is interesting since
Burdzy’s original domain needs the assumption that the gap of the right pipe (the
parameter ε0) needs to be smaller than the gap between the bumps (the parameter ε).

Next, we show what happens if we make the bumps of the domain C4 smaller. We
construct the domain as before except that we introduce a new parameter δ > 0. The
first half of the outer boundary is given by the pieces E(4, 3 + δ, 1, δ, −π/2, −π),
E(2, 3 + δ, 1, δ, 0, π), E(0, 3 + δ, 1, δ, 0, −π), E(−2, 3 + δ, 1, δ, 0, π), E(−4, 3 +
δ, 1, δ, 0, −π/2), and E(−4, 0, 3, 3, π/2, 3π/2). Rotating this half by π yields
the second half of the outer boundary. The first half of the inner boundary
is given by the pieces E(4, 5/2 − δ, 1, δ, π/2, π), E(2, 5/2 − δ, 1, δ, 0, −π),
E(0, 5/2 − δ, 1, δ, 0, π), E(−2, 5/2 − δ, 1, δ, 0, −π), E(−4, 5/2 − δ, 1, δ, 0, π/2),
and E(−4, 0, 5/2, 5/2, π/2, 3π/2). Rotating this half by π yields the second half of
the inner boundary. Next, the orientation of the inner boundary is reversed. Finally,
all coordinates of the boundary are multiplied with 1/4. Note that δ = 1 yields the
domain C4.

We obtain the following results within �1.8 shown in Fig. 20 for δ = 1/4, δ =
1/10, and δ = 1/20.

Fig. 18 The eigenfunction
corresponding to the first
non-trivial interior Neumann
eigenvalue 0.246 286 for the
teether domain C1 cutting the
upper middle connector
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Fig. 19 The eigenfunction
corresponding to the first
non-trivial interior Neumann
eigenvalue 0.384 715 for the
domains C4

Surprisingly, the extreme values stay inside of the domain C̃4, Ĉ4, and C̄4. Also
note that the first non-trivial interior Neumann eigenvalue changes drastically.

Interestingly, we can also remove the bumps in the lower part of the teether domain
C1 and still obtain the extreme values inside the new domain C5. The result is shown
in Fig. 21 within �1.8. The corresponding non-trivial interior Neumann eigenvalue is
0.563 329.

The idea to also remove the bumps on the upper part yields the following results
for the new ‘stadium’ domain S as shown in Fig. 22 within �1.8.

Unfortunately, the extreme values are now on the boundary of S. The first non-
trivial interior Neumann eigenvalues is 0.755 416. The second non-trivial eigenvalue
is very close (but distinct) 0.756 082. We can see that the limiting process of making
the bumps of C4 smaller (see also C̃4 and Ĉ4) yields the eigenfunction corresponding
to the second non-trivial interior Neumann eigenfunction for the domain S. This is
very unexpected.

Further, it seems that the heat flow out of the narrow part of the ‘pipes’ has to be
almost without inclination. We use the parametrization ri(t)· (sin(t), cos(t))� with
ri(t) = ai(1 + 1/2 sin(ωt · I[(ω/2−1)π/ω,(ω/2+1)π/ω]∪[(3ω/2−1)π/ω,(3ω/2+1)π/ω])), t ∈

Fig. 20 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.578 402,
0.668 373, and 0.708 633 for the domains C̃4, Ĉ4 and C̄4, respectively
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Fig. 21 The eigenfunction
corresponding to the first
non-trivial interior Neumann
eigenvalue 0.563 329 for the
domain C5

[0, 2π) with a1 = 1 for the outer boundary and a2 = 0.9 for the inner boundary. Here
I denotes the indicator function. We use ω = 4 and ω = 8 to construct the domains
F1 and F2. We obtain the first non-trivial interior Neumann eigenvalue 1.592 787 and
1.717 098 and the eigenfunction within �1.6. As we can see in Fig. 23 the maximum
and minimum value are obtained on the boundary. In fact, we have two maxima and
two minima.

Next, we show in Table 5 for the different examples that show a failure of the
hot spots conjecture the following information: The domain under consideration, the
location of the global maximum and minimum inside the domain, and the ratio ℵmax

and ℵmin which are defined as the ratio of the maximum inside the domain divided
by the maximum on the boundary and likewise for the minimum. All ratios will be
larger than one, but we are interested in how close they are to one. Recall that the
hot spots conjecture fails if we have ℵmax > 1 and/or ℵmin > 1. The maximum
and minimum are calculated through the Matlab minimization routine fminsearch by

Fig. 22 The eigenfunctions corresponding to the first and second non-trivial interior Neumann eigenvalue
0.755 416 and 0.756 082 for the domain S
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Fig. 23 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 1.592 787
and 1.717 098 for the domains F1 and F2, respectively

passing the function given in (2) to a tolerance of 10−10 for the step size and the
difference of a function evaluation. For the first two domains, we use as starting value
(0, 0.6)� and (0, −0.6)�, respectively. For the next three domains, we use (0, 0.69)�
and (0, −0.69)� and for the last domain, we use (0, 0.6875)� and (0, −0.6875)�.

As we can see the maximum and minimum are approximately located on the y-
axis each centered between the bumps for the first four domains. Interestingly, we
obtain for the ratios 1 + ε with very small ε > 0. The parameter ε decreases as the
shape gets closer to the ‘stadium’ domain. Hence, we might conjecture that there
exists a domain with one hole where we have ℵmax = 1 + ε and ℵmin = 1 + ε with
ε ≥ ε0 > 0 given ε0 arbitrarily small. For the last domain, we obtain the largest value
for ε. Precisely, we obtain ε0 > 1 + 10−3. However, the location of the minimum
might be on the boundary (or on the complete part of the y-axis).

How can we trust the errors that are presented in Table 5? We could numerically
compute the location of the maximum and minimum as well as the ratios for three

Table 5 Location of the maximum and minimum inside the domain along with the ratios ℵmax > 1 and/or
ℵmin > 1 for various domains D that fail the hot spots conjecture

D Location max Location min ℵmax ℵmin

C1 (−3.805−8, 6.877−1)
� (3.299−8,−6.877−1)

� 1 + 1.221−4 1 + 1.221−4

C4 (8.126−8, 6.875−1)
� (−3.893−8,−6.875−1)

� 1 + 1.196−5 1 + 1.196−5

C̃4 (−2.998−8, 6.875−1)
� (−2.028−8,−6.875−1)

� 1 + 7.130−6 1 + 7.118−6

Ĉ4 (3.530−8, 6.875−1)
� (2.824−8,−6.875−1)

� 1 + 3.808−6 1 + 3.802−6

C̄4 (−4.580−8, 6.875−1)
� (−4.787−8,−6.875−1)

� 1 + 2.137−6 1 + 2.138−6

C5 (−1.968−7, 6.877−1)
� ————— 1 + 1.438−3 —————
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Fig. 24 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.372 580,
0.374 917, and 0.378 131 for the domains C1,0.1, C1,0.15 and C1,0.2, respectively

different numbers of collocation nodes and compute the estimated order of conver-
gence by log(|unf

−u2nf
|/|u2nf

−u4nf
|)/ log(2)) (we do not know the exact solution

as we did for Tables 1, 2, and 3), but this is very time consuming and not necessary
here. We claim that the x-coordinate of the location of the maximum and minimum
is zero due to the symmetry of all six domains considered in Table 5 which might be
proven similarly with the techniques given in Burdzy [9]. Then, the results for the x-
coordinate are accurate to eight digits. We claim the same is true for the y-coordinate
and then as well as for the ratios.

5.4 Domains withmore than one hole

Finally, we show without further discussion that we are also able to construct exam-
ples with more than one hole where the hot spots conjecture fails to hold. Using the
teether domain C1 and removing a circle centered at (1/2, 11/16)� with radius R,
yields a domain with two holes, say C1,R. Using R = 0.1, R = 0.15, and R = 0.2,
gives the results shown in Fig. 24 where we used the same set of parameters as for
the results for C1.

Fig. 25 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.374 552,
0.379 670, and 0.387 461 for the domains C̃1,0.1, C̃1,0.15 and C̃1,0.2, respectively
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Fig. 26 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.376 406,
0.383 781, and 0.394 522 for the domains Cmir

1,0.1, Cmir
1,0.15 and Cmir

1,0.2, respectively

As we can see, the maximum and minimum still remain inside the domains C1,0.1
and C1,0.15. The location of the maximum is slightly shifted to the right whereas
the minimum is slightly shifted to the left for the first two cases. If the radius of
the removed circle is large, then the maximum goes to the boundary whereas the
minimum stays inside the domain C1,0.2 as shown in the last contour plot of Fig. 24.
Next, we construct domains with three holes. Therefore, we use the previous domain
C1,R and mirror the circular hole at the y-axis. This yields the domain C̃1,R. Using
the same parameters as before yields the results shown in Fig. 25.

As we can see now, the maximum and minimum remain inside all the three
domains C̃1,0.1, C̃1,0.15, and C̃1,0.2. Next, we consider domains with four holes.
Therefore, we use the domains C1,0.1, C1,0.15 and C1,0.2 and mirror the upper
right circular hole at the x-axis. This yields the domains Cmir

1,0.1, Cmir
1,0.15 and Cmir

1,0.2,
respectively. The results are presented in Fig. 26.

As expected, we obtain the minimal and maximal value inside the domain for the
two domains C̃mir

1,0.1 and C̃mir
1,0.15 whereas the maximum is on the boundary for the

domain C̃mir
1,0.2. The domains with five holes C̃mir

1,0.1, C̃mir
1,0.15 and C̃mir

1,0.2 are constructed

by mirroring the domains C̃1,0.1, C̃1,0.15 and C̃1,0.2 at the x-axis. The results are
shown in Fig. 27.

Fig. 27 The eigenfunction corresponding to the first non-trivial interior Neumann eigenvalue 0.378 360,
0.388 438, and 0.403 504 for the domains C̃mir

1,0.1, C̃mir
1,0.15 and C̃mir

1,0.2, respectively
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As we can see, the maximal and minimal values are attained inside all the consid-
ered domains with five holes.

The extension for the construction of domains having more than five holes which
do not satisfy the hot spots conjecture is now straightforward.

6 Summary, conclusion, and outlook

In this paper, a detailed description is given on how to compute the first non-
trivial eigenvalue and its corresponding eigenfunction for the Laplace equation with
Neumann boundary condition for a given domain with one hole. The problem is
reformulated as a non-linear eigenvalue problem involving boundary integral equa-
tions thus reducing a two-dimensional problem to a one-dimensional problem. Due
to superconvergence we are able to achieve highly accurate approximations both for
the eigenvalue and the eigenfunction. With this method at hand, we can compute the
eigenvalue and eigenfunction for several different constructed domains. This gives
the possibility to find domains with one hole failing the hot spots conjecture and
investigate the influence of varying the domain. Some interesting observation can be
made such as that the ratio between the maximal/minimal value inside the domain
and the maximal/minimal value on the boundary can be 1 + 10−3. But the question
remains whether there is an upper bound on this constant.

We conclude that simple domains can be constructed that fail the hot spots conjec-
ture. Moreover, we conjecture that symmetry is not needed to construct domains that
fail the hot spots conjecture as it was assumed for Burdzy’s domain. However, a large
deviation from symmetry shows that the hot spots conjecture is true. Hence, there is
a certain switch between those two cases. Further, the gap size between the right pipe
and the gap size between the two bumps can be the same. In Burdzy’s domain the
gap size of the pipe was assumed to be smaller. We conjecture that this assumption
can be removed. Additionally, the flow outside the pipe needs to be horizontal. Using
only a small deviation of the outflow of the pipe show that the hot spots conjecture
holds. We conjecture that this is needed for the failure of the hot spots conjecture.

The Matlab codes including the produced data are available at github
https://github.com/kleefeld80/hotspots

and researchers can run it on their own constructed domains and reproduce the
numerical results within this article. This might give new ideas whether one can find
assumptions in order to prove or disprove the hot spots conjecture. The extension for
domains with more than one hole is straightforward. For the sake of completeness
they are given at the end of the numerical results section for domains with up to five
holes, but without detailed discussion.

It would be interesting to check whether it is possible to construct three-
dimensional domains with one hole that fail the hot spots conjecture, too. The
software for a domain without a hole would already be available and only needs to
be extended (see [18, 21] or other sophisticated software such as BEM++ [37]). The
consideration of other partial differential equations in two or three dimensions whose
fundamental solution is known together with Neumann boundary condition could be
numerically investigated as well.

https://github.com/kleefeld80/hotspots
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