000902322 001__ 902322
000902322 005__ 20240711085637.0
000902322 0247_ $$2Handle$$a2128/29478
000902322 037__ $$aFZJ-2021-04179
000902322 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author
000902322 1112_ $$a6th Asian SOFC Symposium and Exhibition$$cJeju$$d2021-11-07 - 2021-11-09$$wSouth Korea
000902322 245__ $$aLa(Co, Ni, Fe)O3 air-electrode for solid-oxide cells, from powder to stack
000902322 260__ $$c2021
000902322 3367_ $$033$$2EndNote$$aConference Paper
000902322 3367_ $$2DataCite$$aOther
000902322 3367_ $$2BibTeX$$aINPROCEEDINGS
000902322 3367_ $$2DRIVER$$aconferenceObject
000902322 3367_ $$2ORCID$$aLECTURE_SPEECH
000902322 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1639578430_4012$$xVideo
000902322 520__ $$aLa(Co, Ni, Fe)O3 air-electrode for solid-oxide cells, from powder to stackQianli Ma,*a Qingping Fang,a Olivier Guillon,a,b Norbert H. Menzler aa Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), D-52425 Jülichb Jülich Aachen Research Alliance, JARA-Energy, D-52425 Jülich, Germany* E-mail: q.ma@fz-juelich.de Although the-state-of-the-art La1-xSrxFe1-yCoyO3 (LSCF) and La1-xSrxCoO3 (LSC) are mature air-electrodes for solid oxide cells (SOCs, including solid oxide fuel cells and solid oxide electrolysis), the continuous depletion of strontium in LSCF or LSC during operation of SOCs leads to deterioration of electrical conductivity and electrocatalytic activity of the air-electrode. It also causes detachment of the contact between the air-electrodes and the metallic interconnects used in SOC stacks. Therefore it is worth to search for alternative air-electrode materials. Among the possible candidates of Sr-free air-electrode materials, the system LaCoO3-LaNiO3-LaFeO3 shows high attractiveness because they have SOC-compatible physical properties, good electrochemical performance and chemical stability against chromium oxyhydroxides released from the metallic interconnects used in SOC stacks. [1]Based on the results obtained on the perovskites in the quasi-ternary system of LaFeO3-LaCoO3-LaNiO3,[1] A-site deficient La0.97Ni0.5Co0.5O3 (LNC97) is selected as the further optimized composition, which has an electronic conductivity of over 1000 S cm-1 at 800oC. [2] Compatibility of LNC97 with 8 mol% Y2O3 stabilized ZrO2 (8YSZ) is analyzed and compared with that of La0.58Sr0.4Co0.8Fe0.2O3-δ (LSCF) and 8YSZ. According to the requirements of the air electrode materials with qualified performance, i.e. 1) high electronic conductivity, 2) high ionic conductivity, and 3) high catalytic activity for the oxygen reduction reaction, LNC97 based electrodes are modified, characterized and optimized by symmetric cell tests. Mechanisms for explaining the electrode-processes of LNC97-based electrodes are raised.[2] Full cells based on optimized LNC97 air-electrode were tested under both fuel cell mode and electrolyzer mode. Mid-term operation of about 1000 h for SOCs in both modes primarily proved the stability of LNC97-based air electrodes. Impedance spectra were systematically applied to understand the polarization processes of the cells.[3] A stack based on LNC97 air electrode was also built and a long-term operation of 4000 h was investigated under fuel cell mode. The performance is comparable to the state-of-the-art LSCF air electrode based SOC stacks, and the degradation rate is as low as 0.9% kh-1, indicating a prospective future for the developed material and the relative SOCs. References[1] F. Tietz, I. ArulRaj, Q. Ma, S.Baumann, A.Mahmoud, R.P.Hermann, J. Solid State Chem. 237 (2016) 183–191.[2] Q. Ma, M. Balaguer, D. Pérez-Coll, L. G. J. de Haart, J. M. Serra, G. C. Mather, F. Tietz, N. H. Menzler, O. Guillon. ACS Appl. Energy Mater. 1 (2018) 2784−2792.[3] Q Ma, S Dierickx, V Vibhu, D Sebold, LGJ de Haart, A Weber, O Guillon, NH Menzler, J. Electrochem. Soc., 167 (2020) 084522.
000902322 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000902322 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000902322 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2
000902322 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b3
000902322 8564_ $$uhttps://juser.fz-juelich.de/record/902322/files/Abstract_Template%20Ma.doc$$yOpenAccess
000902322 909CO $$ooai:juser.fz-juelich.de:902322$$pdriver$$pVDB$$popen_access$$popenaire
000902322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ
000902322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000902322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000902322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b3$$kFZJ
000902322 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000902322 9141_ $$y2021
000902322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902322 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902322 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000902322 9801_ $$aFullTexts
000902322 980__ $$aconf
000902322 980__ $$aVDB
000902322 980__ $$aUNRESTRICTED
000902322 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902322 980__ $$aI:(DE-82)080011_20140620
000902322 981__ $$aI:(DE-Juel1)IMD-2-20101013