000902326 001__ 902326
000902326 005__ 20240712113111.0
000902326 0247_ $$2doi$$a10.1016/j.ensm.2021.10.017
000902326 0247_ $$2ISSN$$a2405-8289
000902326 0247_ $$2ISSN$$a2405-8297
000902326 0247_ $$2Handle$$a2128/29144
000902326 0247_ $$2altmetric$$aaltmetric:115223979
000902326 0247_ $$2WOS$$aWOS:000718172000007
000902326 037__ $$aFZJ-2021-04183
000902326 082__ $$a624
000902326 1001_ $$0P:(DE-Juel1)174187$$aShaji, Ishamol$$b0
000902326 245__ $$aMultisalt chemistry in ion transport and interface of lithium metal polymer batteries
000902326 260__ $$aAmsterdam$$bElsevier$$c2022
000902326 3367_ $$2DRIVER$$aarticle
000902326 3367_ $$2DataCite$$aOutput Types/Journal article
000902326 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637840772_14846
000902326 3367_ $$2BibTeX$$aARTICLE
000902326 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902326 3367_ $$00$$2EndNote$$aJournal Article
000902326 520__ $$aSolvent-free solid-state polymer electrolytes (SPE) that go beyond the barriers like intrinsic low ionic conductivity, slow ion dynamics, and unstable electrode-electrolyte interphase will be fundamental for realizing the next generation of safe and high-performance lithium metal batteries. Hereby, cross-linked solid polymer electrolyte (XSPE) networks based on multisalt chemistry are synthesized using photopolymerization reaction, which outshine the conventional single salt-based XSPEs. By introducing the multisalt chemistry, an enhanced Li+ ion transport (ionic conductivity and short residence time) via anion mediated transfer (AMT) and improved interfacial characteristics (e.g., stable Li|electrolyte interphase, smooth Li-deposition) are demonstrated. Furthermore, a three-times increase in Li+ ion transference number and nearly one order of magnitude increment in diffusion coefficient are achieved. Using theoretical calculations, we propose an AMT-based ion conduction pathway in multisalt-based XSPEs. Besides, the superior electrochemical performance of multisalt-based XSPEs compared to single salt-based polymer electrolytes in Li-metal polymer batteries (LMPB) using C-LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes are successfully demonstrated.
000902326 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902326 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902326 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1
000902326 7001_ $$0P:(DE-Juel1)168592$$aEhteshami, Niloofar$$b2
000902326 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$eCorresponding author
000902326 7001_ $$0P:(DE-Juel1)171863$$aNair, Jijeesh Ravi$$b4$$eCorresponding author
000902326 773__ $$0PERI:(DE-600)2841602-8$$a10.1016/j.ensm.2021.10.017$$gVol. 44, p. 263 - 277$$p263 - 277$$tEnergy storage materials$$v44$$x2405-8297$$y2022
000902326 8564_ $$uhttps://juser.fz-juelich.de/record/902326/files/Journal%20article.pdf$$yRestricted
000902326 8564_ $$uhttps://juser.fz-juelich.de/record/902326/files/Accepted%20manuscript.pdf$$yPublished on 2021-10-14. Available in OpenAccess from 2022-10-14.
000902326 909CO $$ooai:juser.fz-juelich.de:902326$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174187$$aForschungszentrum Jülich$$b0$$kFZJ
000902326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ
000902326 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)168592$$aExternal Institute$$b2$$kExtern
000902326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000902326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171863$$aForschungszentrum Jülich$$b4$$kFZJ
000902326 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902326 9141_ $$y2022
000902326 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902326 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902326 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902326 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902326 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY STORAGE MATER : 2021$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000902326 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bENERGY STORAGE MATER : 2021$$d2022-11-16
000902326 920__ $$lyes
000902326 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000902326 9801_ $$aFullTexts
000902326 980__ $$ajournal
000902326 980__ $$aVDB
000902326 980__ $$aUNRESTRICTED
000902326 980__ $$aI:(DE-Juel1)IEK-12-20141217
000902326 981__ $$aI:(DE-Juel1)IMD-4-20141217