| Home > Publications database > Multisalt chemistry in ion transport and interface of lithium metal polymer batteries > print |
| 001 | 902326 | ||
| 005 | 20240712113111.0 | ||
| 024 | 7 | _ | |a 10.1016/j.ensm.2021.10.017 |2 doi |
| 024 | 7 | _ | |a 2405-8289 |2 ISSN |
| 024 | 7 | _ | |a 2405-8297 |2 ISSN |
| 024 | 7 | _ | |a 2128/29144 |2 Handle |
| 024 | 7 | _ | |a altmetric:115223979 |2 altmetric |
| 024 | 7 | _ | |a WOS:000718172000007 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-04183 |
| 082 | _ | _ | |a 624 |
| 100 | 1 | _ | |a Shaji, Ishamol |0 P:(DE-Juel1)174187 |b 0 |
| 245 | _ | _ | |a Multisalt chemistry in ion transport and interface of lithium metal polymer batteries |
| 260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637840772_14846 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Solvent-free solid-state polymer electrolytes (SPE) that go beyond the barriers like intrinsic low ionic conductivity, slow ion dynamics, and unstable electrode-electrolyte interphase will be fundamental for realizing the next generation of safe and high-performance lithium metal batteries. Hereby, cross-linked solid polymer electrolyte (XSPE) networks based on multisalt chemistry are synthesized using photopolymerization reaction, which outshine the conventional single salt-based XSPEs. By introducing the multisalt chemistry, an enhanced Li+ ion transport (ionic conductivity and short residence time) via anion mediated transfer (AMT) and improved interfacial characteristics (e.g., stable Li|electrolyte interphase, smooth Li-deposition) are demonstrated. Furthermore, a three-times increase in Li+ ion transference number and nearly one order of magnitude increment in diffusion coefficient are achieved. Using theoretical calculations, we propose an AMT-based ion conduction pathway in multisalt-based XSPEs. Besides, the superior electrochemical performance of multisalt-based XSPEs compared to single salt-based polymer electrolytes in Li-metal polymer batteries (LMPB) using C-LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes are successfully demonstrated. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Diddens, Diddo |0 P:(DE-Juel1)169877 |b 1 |
| 700 | 1 | _ | |a Ehteshami, Niloofar |0 P:(DE-Juel1)168592 |b 2 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 3 |e Corresponding author |
| 700 | 1 | _ | |a Nair, Jijeesh Ravi |0 P:(DE-Juel1)171863 |b 4 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.ensm.2021.10.017 |g Vol. 44, p. 263 - 277 |0 PERI:(DE-600)2841602-8 |p 263 - 277 |t Energy storage materials |v 44 |y 2022 |x 2405-8297 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/902326/files/Journal%20article.pdf |y Restricted |
| 856 | 4 | _ | |y Published on 2021-10-14. Available in OpenAccess from 2022-10-14. |u https://juser.fz-juelich.de/record/902326/files/Accepted%20manuscript.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:902326 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174187 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169877 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-Juel1)168592 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171863 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERGY STORAGE MATER : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
| 915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ENERGY STORAGE MATER : 2021 |d 2022-11-16 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|