000902340 001__ 902340
000902340 005__ 20240711085638.0
000902340 0247_ $$2doi$$a10.1039/D1TA05240C
000902340 0247_ $$2ISSN$$a2050-7488
000902340 0247_ $$2ISSN$$a2050-7496
000902340 0247_ $$2Handle$$a2128/30688
000902340 0247_ $$2WOS$$aWOS:000700910700001
000902340 037__ $$aFZJ-2021-04189
000902340 082__ $$a530
000902340 1001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b0$$eCorresponding author$$ufzj
000902340 245__ $$aFabrication of multi-layered structures for proton conducting ceramic cells
000902340 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2022
000902340 3367_ $$2DRIVER$$aarticle
000902340 3367_ $$2DataCite$$aOutput Types/Journal article
000902340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644830964_13686
000902340 3367_ $$2BibTeX$$aARTICLE
000902340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902340 3367_ $$00$$2EndNote$$aJournal Article
000902340 520__ $$aProtonic ceramic fuel cells offer a high potential to produce electrical energy in a very efficient way. The performance of such a device among others is highly dependent on the electrolyte material and its thickness. Therefore, multilayer structures are used to reduce the electrolyte thickness down to 10–20 μm, supported by a much thicker porous anode. In this work sequential tape-casting is used to fabricate half-cells consisting of a BZCY electrolyte and a BZCY/NiO support which also serves as the anode layer. The starting powders are characterised as well as the thermal behaviour of the half-cells during heat treatment. Sintering experiments show that a temperature of T ≥ 1450 °C is needed to achieve the desired microstructure. After that a scale-up approach to a size of the half-cells of about 25 cm2 is shown. The influence of the processing temperature on the microstructure is shown by detailed XRD and SEM studies. The formation of a BaY2NiO5 transient liquid phase during the heat treatment of the cells is clearly demonstrated. Finally, the proton conductivity of the tape-cast cells shows competitive values of σ = 0.003 S cm−1 at 600 °C with the advantage of an industrially proven and up-scalable manufacturing technique.
000902340 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000902340 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902340 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya E.$$b1
000902340 7001_ $$0P:(DE-HGF)0$$aHuang, Yuanye$$b2
000902340 7001_ $$00000-0003-3811-8963$$aMerkle, Rotraut$$b3
000902340 7001_ $$0P:(DE-HGF)0$$aMaier, Joachim$$b4
000902340 7001_ $$0P:(DE-Juel1)144923$$aMeulenberg, Wilhelm A.$$b5
000902340 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D1TA05240C$$gp. 10.1039.D1TA05240C$$p2362-2373 $$tJournal of materials chemistry / A$$v10$$x2050-7496$$y2022
000902340 8564_ $$uhttps://juser.fz-juelich.de/record/902340/files/d1ta05240c.pdf$$yOpenAccess
000902340 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000902340 909CO $$ooai:juser.fz-juelich.de:902340$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000902340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b0$$kFZJ
000902340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b1$$kFZJ
000902340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b5$$kFZJ
000902340 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000902340 9141_ $$y2022
000902340 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902340 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000902340 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902340 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902340 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger
000902340 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2021$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000902340 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2021$$d2022-11-09
000902340 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902340 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000902340 9801_ $$aFullTexts
000902340 980__ $$ajournal
000902340 980__ $$aVDB
000902340 980__ $$aUNRESTRICTED
000902340 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902340 980__ $$aI:(DE-82)080011_20140620
000902340 980__ $$aAPC
000902340 981__ $$aI:(DE-Juel1)IMD-2-20101013