000902341 001__ 902341
000902341 005__ 20240712113112.0
000902341 0247_ $$2doi$$a10.1039/D1TA05695F
000902341 0247_ $$2ISSN$$a2050-7488
000902341 0247_ $$2ISSN$$a2050-7496
000902341 0247_ $$2Handle$$a2128/30689
000902341 0247_ $$2altmetric$$aaltmetric:115724708
000902341 0247_ $$2WOS$$aWOS:000712912400001
000902341 037__ $$aFZJ-2021-04190
000902341 041__ $$aEnglish
000902341 082__ $$a530
000902341 1001_ $$0P:(DE-Juel1)174435$$aFischer, Liudmila$$b0$$ufzj
000902341 245__ $$aPhase formation and performance of solid state reactive sintered Ce 0.8 Gd 0.2 O 2− δ –FeCo 2 O 4 composites
000902341 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2022
000902341 3367_ $$2DRIVER$$aarticle
000902341 3367_ $$2DataCite$$aOutput Types/Journal article
000902341 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644831374_18140
000902341 3367_ $$2BibTeX$$aARTICLE
000902341 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902341 3367_ $$00$$2EndNote$$aJournal Article
000902341 520__ $$aReactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive sintering of commercial Ce0.8Gd0.2O2−δ, Fe2O3, and Co3O4 powders. The phases formed in situ during sintering are investigated qualitatively and quantitatively by means of XRD and Rietveld refinement as well as transmission electron microscopy. Besides gadolinia-doped ceria, two Fe/Co-spinel phases are in equilibrium in agreement with the phase diagram. Moreover, a donor-doped GdFeO3-based perovskite (Gd,Ce)(Fe,Co)O3 showing electronic conductivity is formed. Due to these intense phase reactions, the composition of each individual phase is assessed for all composites and their functional properties are discussed. The oxygen permeation performances of the composites are measured including their dependence on temperature and the potential limiting steps are discussed. The results reveal that the phase reactions support the formation of the desired mixed ionic electronic conductivity achieving percolation at low nominal spinel contents. The specific microstructure plays an extremely important role in the membrane performance and, thus, special attention should be paid to this in future research about dual phase membranes.
000902341 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000902341 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000902341 536__ $$0G:(GEPRIS)387282673$$aDFG project 387282673 - Die Rolle von Grenzflächen in mehrphasigen Ceroxid-basierten Membranen für den Einsatz in Membranreaktoren $$c387282673$$x2
000902341 588__ $$aDataset connected to DataCite
000902341 7001_ $$0P:(DE-Juel1)181017$$aNeuhaus, Kerstin$$b1$$ufzj
000902341 7001_ $$0P:(DE-Juel1)185885$$aSchmidt, Christina$$b2$$ufzj
000902341 7001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b3
000902341 7001_ $$0P:(DE-Juel1)176603$$aBehr, Patrick$$b4$$ufzj
000902341 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b5$$eCorresponding author
000902341 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
000902341 7001_ $$0P:(DE-Juel1)144923$$aMeulenberg, Wilhelm A.$$b7
000902341 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D1TA05695F$$gp. 10.1039.D1TA05695F$$p 2412-2420 $$tJournal of materials chemistry / A$$v10$$x2050-7496$$y2022
000902341 8564_ $$uhttps://juser.fz-juelich.de/record/902341/files/d1ta05695f.pdf$$yOpenAccess
000902341 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000902341 909CO $$ooai:juser.fz-juelich.de:902341$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174435$$aForschungszentrum Jülich$$b0$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181017$$aForschungszentrum Jülich$$b1$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185885$$aForschungszentrum Jülich$$b2$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b3$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176603$$aForschungszentrum Jülich$$b4$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b5$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
000902341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b7$$kFZJ
000902341 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000902341 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000902341 9141_ $$y2022
000902341 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902341 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000902341 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902341 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902341 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger
000902341 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2021$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000902341 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2021$$d2022-11-09
000902341 920__ $$lyes
000902341 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902341 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000902341 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000902341 9801_ $$aAPC
000902341 9801_ $$aFullTexts
000902341 980__ $$ajournal
000902341 980__ $$aVDB
000902341 980__ $$aUNRESTRICTED
000902341 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902341 980__ $$aI:(DE-Juel1)IEK-12-20141217
000902341 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000902341 980__ $$aAPC
000902341 981__ $$aI:(DE-Juel1)IMD-4-20141217
000902341 981__ $$aI:(DE-Juel1)IMD-2-20101013