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Motivation
Problem:

Neuroscience models have high number of degrees of freedom
Only specific parameter regions are of interest
Finding these regions efficiently requires development of complex tools and
strategies

Goal:
1 High throughput hyper-parameter optimization at scale using Machine

Learning
2 Parallelization on multi-node HPCs
3 Handling of complex problems with arbitrary tools and algorithms

Focus: Showcasing different neuroscience models optimized with the Learning
to Learn (L2L) framework

Introduction: Learning to Learn (L2L)
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Concept formalized by Thrun
and Pratt [1]
Generalization on new data
sets via experience
Parameter space exploration
Two loop structure
Different optimization
algorithms
Easily parallelizable on HPC
installations

NEST: Tuning large scale spiking networks
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Flexible parameter exploration of spiking networks using NEST on HPC
Leverages the internal parallelization capabilities of NEST
UC1: Optimization of connectivity using metrics of expected dynamics
UC2: Optimization of plasticity rules to generate new models with specific
structural-functional constraints
UC3: Optimize networks to perform a specific task e.g. classification (top
figure)

NetLogo-Nest: Ant Colony Optimization

Multi-agent simulation in NetLogo [2]
NEST [3], SpikingLab [4] as back-end
Ants explore food and avoid collisions
Drop pheromones for communication
Steered by a Spiking Neural Network
Optimization of the weights and delays
≈100 individuals optimized in parallel,
15 ants

The Virtual Brain (TVB): Parameter exploration
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TVB [5]: whole brain simulation
using neural mass models and
detailed connectomes
Parameter fitting to match
patient EEG/fMRI
TVB Python optimizee available
TVB CUDA multi-instance
optimization (left figure)

Recommended usage of RateML to easily build TVB models

Arbor: Single Cell Parameter Optimization

Arbor: Network simulations of
morphologically-detailed neurons
[6]
Built for modern, accelerated HPC
using C++20 and Python

Python interface connects L2L and Arbor
Use-case: For a given model i.e. morphology and assignment of ion channels,
find parameters to match empirically obtained voltage traces
Working prototype for distributed optimization using single individuals
Proof of concept for multi-instance optimization leveraging Arbor’s GPU
support → simultaneous evaluation of a large population of individuals
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