
Hyper-parameter space exploration of neuroscience models on high performance computers with the Learning to Learn
framework
Alper Yegenoglu1,2, Sandra Diaz-Pier1, Cristian Jimenez Romero1, Aaron Perez Martin1, Michiel van der Vlag1, Wouter Klijn1, Anne Küsters1, Brent Huisman1, Thorsten Hater1, Michael Herty2, Abigail Morrison1,3,4

1SDL Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Center and JARA; 2Institute of Geometry and Applied Mathematics, Department of Mathematics, RWTH Aachen University, Aachen, Germany; 3Department of Computer

Science - 3, Faculty 1, RWTH Aachen University; 4Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience, Computational and Systems Neuroscience, Jülich Research Center and JARA

contact: a.yegenoglu@fz-juelich.de

Motivation
Problem:

Neuroscience models have high number of degrees of freedom
Only specific parameter regions are of interest
Finding these regions efficiently requires development of complex tools and
strategies

Goal:
1 High throughput hyper-parameter optimization at scale using Machine

Learning
2 Parallelization on multi-node HPCs
3 Handling of complex problems with arbitrary tools and algorithms

Focus: Showcasing different neuroscience models optimized with the Learning
to Learn (L2L) framework

Introduction: Learning to Learn (L2L)

 

Optimizer

Inner loop

Pool of tasks 

from family F

Task T from F

Fitness of the optimizee

with current hyperparameters

to learn task T

Fitness 

calculation

Fitness 

function

Evolutionary strategies

Filtering strategies

Backpropagation

Learning 

hyperparameters

Learning process 

for task T

Outer loop

Artificial or 

Biologically Inspired

Learning System

Optimizee

Concept formalized by Thrun
and Pratt [1]
Generalization on new data
sets via experience
Parameter space exploration
Two loop structure
Different optimization
algorithms
Easily parallelizable on HPC
installations

NEST: Tuning large scale spiking networks

ReservoirEncoderInput

Inner Loop

Flexible parameter exploration of spiking networks using NEST on HPC
Leverages the internal parallelization capabilities of NEST
UC1: Optimization of connectivity using metrics of expected dynamics
UC2: Optimization of plasticity rules to generate new models with specific
structural-functional constraints
UC3: Optimize networks to perform a specific task e.g. classification (top
figure)

NetLogo-Nest: Ant Colony Optimization

Multi-agent simulation in NetLogo [2]
NEST [3], SpikingLab [4] as back-end
Ants explore food and avoid collisions
Drop pheromones for communication
Steered by a Spiking Neural Network
Optimization of the weights and delays
≈100 individuals optimized in parallel,
15 ants

The Virtual Brain (TVB): Parameter exploration

 

Optimizer

Fitness of the optimizee

with current hyperparameters

to learn task T

Fitness function 

on GPU

Correlation between 

Structural - and 

Simulated Functional 

Connectivity

Multi gradient descent

Learning 

hyperparameters

Outer loop

CUDA TVB

 optimizee

Inner loop

Launch multi instances 

of TVB on GPU

Expand function

Launch an optimizer for 

each set of parameters

Compress function

Compress results 

to optimizee format

TVB [5]: whole brain simulation
using neural mass models and
detailed connectomes
Parameter fitting to match
patient EEG/fMRI
TVB Python optimizee available
TVB CUDA multi-instance
optimization (left figure)

Recommended usage of RateML to easily build TVB models

Arbor: Single Cell Parameter Optimization

Arbor: Network simulations of
morphologically-detailed neurons
[6]
Built for modern, accelerated HPC
using C++20 and Python

Python interface connects L2L and Arbor
Use-case: For a given model i.e. morphology and assignment of ion channels,
find parameters to match empirically obtained voltage traces
Working prototype for distributed optimization using single individuals
Proof of concept for multi-instance optimization leveraging Arbor’s GPU
support → simultaneous evaluation of a large population of individuals

References
[1] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.
[2] Seth Tisue and Uri Wilensky. “Netlogo: A simple environment for modeling complexity”. In: International conference on complex systems. Vol. 21. Boston,

MA. 2004, pp. 16–21.
[3] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (NEural Simulation Tool)”. In: Scholarpedia 2.4 (2007), p. 1430.
[4] Cristian Jimenez-Romero and Jeffrey Johnson. “SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo”. In: Neural Computing and

Applications 28.1 (2017), pp. 755–764.
[5] Paula Sanzleon et al. “The virtual brain: A simulator of primate brain network dynamics”. In: Frontiers in Neuroinformatics 7.MAY (2013). issn: 16625196.

doi: 10.3389/fninf.2013.00010.
[6] N. Abi Akar et al. “Arbor — A Morphologically-Detailed Neural Network Simulation Library for Contemporary High-Performance Computing Architectures”.

In: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). Feb. 2019, pp. 274–282. doi:
10.1109/EMPDP.2019.8671560.

Acknowledgments
This research has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Agreement No. 945539 (Human
Brain Project SGA3). This research has also been partially funded by the Helmholtz Association through the Helmholtz Portfolio Theme “Supercomputing and Modeling for the
Human Brain”.

Follow us on GitHub

Co-funded by
the European Union

https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1109/EMPDP.2019.8671560

	References

