000902355 001__ 902355
000902355 005__ 20240712113125.0
000902355 0247_ $$2doi$$a10.1002/cphc.202100032
000902355 0247_ $$2ISSN$$a1439-4235
000902355 0247_ $$2ISSN$$a1439-7641
000902355 0247_ $$2Handle$$a2128/29093
000902355 0247_ $$2altmetric$$aaltmetric:105368732
000902355 0247_ $$2pmid$$apmid:33760337
000902355 0247_ $$2WOS$$aWOS:000646324000001
000902355 037__ $$aFZJ-2021-04204
000902355 082__ $$a540
000902355 1001_ $$0P:(DE-Juel1)165315$$aLoutati, A.$$b0$$ufzj
000902355 245__ $$aPhase‐field Determination of NaSICON Materials in the Quaternary System Na 2 O−P 2 O 5 −SiO 2 −ZrO 2 : The Series Na 3 Zr 3–x Si 2 P x O 11.5+x/2
000902355 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2021
000902355 3367_ $$2DRIVER$$aarticle
000902355 3367_ $$2DataCite$$aOutput Types/Journal article
000902355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637650780_28629
000902355 3367_ $$2BibTeX$$aARTICLE
000902355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902355 3367_ $$00$$2EndNote$$aJournal Article
000902355 520__ $$aTwo types of solid electrolytes have reached technological relevance in the field of sodium batteries: ß/ß”-aluminas and NaSICON-type materials. Today, significant attention is paid to room-temperature stationary electricity storage technologies and all-solid-state Na batteries used in combination with these solid electrolytes are an emerging research field besides sodium-ion batteries. In comparison, NaSICON materials can be processed at lower sintering temperatures than the ß/ß”-aluminas and have a similarly attractive ionic conductivity. Since Na2O−SiO2−ZrO2−P2O5 ceramics offer wider compositional variability, the series Na3Zr3–xSi2PxO11.5+x/2 with seven compositions (0≤x≤3) was selected from the quasi-quaternary phase diagram in order to identify the predominant stability region of NaSICON within this series and to explore the full potential of such materials, including the original NaSICON composition of Na3Zr2Si2POl2 as a reference. Several characterization techniques were used for the purpose of better understanding the relationships between processing and properties of the ceramics. X-ray diffraction analysis revealed that the phase region of NaSICON materials is larger than expected. Moreover, new ceramic NaSICON materials were discovered in the system crystallizing with a monoclinic NaSICON structure (space group C2/c). Impedance spectroscopy was utilized to investigate the ionic conductivity, giving clear evidence for a dependence on crystal symmetry. The monoclinic NaSICON structure showed the highest ionic conductivity with an optimum ionic conductivity of 1.22×10−3 at 25 °C for the composition Na3Zr2Si2PO12. As the degree of P5+ content increases, the total ionic conductivity is initially enhanced until x=1 and then decreases again. Simultaneously, the increasing amount of phosphorus leads a decrease in the sintering temperatures for all samples, which was confirmed by dilatometry measurements. The thermal and microstructural properties of the prepared samples are also evaluated and discussed.
000902355 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902355 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902355 7001_ $$0P:(DE-Juel1)159368$$aSohn, Y. J.$$b1$$ufzj
000902355 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b2$$eCorresponding author
000902355 773__ $$0PERI:(DE-600)2025223-7$$a10.1002/cphc.202100032$$gVol. 22, no. 10, p. 995 - 1007$$n10$$p995 - 1007$$tChemPhysChem$$v22$$x1439-7641$$y2021
000902355 8564_ $$uhttps://juser.fz-juelich.de/record/902355/files/cphc.202100032.pdf$$yOpenAccess
000902355 8767_ $$d2021-03-17$$eAPC$$jDEAL$$lDeposit: Wiley
000902355 909CO $$ooai:juser.fz-juelich.de:902355$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000902355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165315$$aForschungszentrum Jülich$$b0$$kFZJ
000902355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b1$$kFZJ
000902355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b2$$kFZJ
000902355 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902355 9141_ $$y2021
000902355 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902355 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902355 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000902355 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902355 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMPHYSCHEM : 2019$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902355 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902355 920__ $$lyes
000902355 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902355 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000902355 9801_ $$aFullTexts
000902355 980__ $$ajournal
000902355 980__ $$aVDB
000902355 980__ $$aUNRESTRICTED
000902355 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902355 980__ $$aI:(DE-Juel1)IEK-12-20141217
000902355 980__ $$aAPC
000902355 981__ $$aI:(DE-Juel1)IMD-4-20141217
000902355 981__ $$aI:(DE-Juel1)IMD-2-20101013