000902373 001__ 902373
000902373 005__ 20240711085639.0
000902373 0247_ $$2doi$$a10.3390/ma14226809
000902373 0247_ $$2Handle$$a2128/30249
000902373 0247_ $$2altmetric$$aaltmetric:117858829
000902373 0247_ $$2pmid$$apmid:34832211
000902373 0247_ $$2WOS$$aWOS:000725233100001
000902373 037__ $$aFZJ-2021-04207
000902373 082__ $$a600
000902373 1001_ $$0P:(DE-Juel1)179291$$aMann, Markus$$b0
000902373 245__ $$aEvaluation of Scalable Synthesis Methods for Aluminum-Substituted Li7La3Zr2O12 Solid Electrolytes
000902373 260__ $$aBasel$$bMDPI$$c2021
000902373 3367_ $$2DRIVER$$aarticle
000902373 3367_ $$2DataCite$$aOutput Types/Journal article
000902373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642148813_4887
000902373 3367_ $$2BibTeX$$aARTICLE
000902373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902373 3367_ $$00$$2EndNote$$aJournal Article
000902373 520__ $$aSolid electrolyte is the key component in all-solid-state batteries (ASBs). It is required in electrodes to enhance Li-conductivity and can be directly used as a separator. With its high Li-conductivity and chemical stability towards metallic lithium, lithium-stuffed garnet material Li7La3Zr2O12 (LLZO) is considered one of the most promising solid electrolyte materials for high-energy ceramic ASBs. However, in order to obtain high conductivities, rare-earth elements such as tantalum or niobium are used to stabilize the highly conductive cubic phase. This stabilization can also be obtained via high levels of aluminum, reducing the cost of LLZO but also reducing processability and the Li-conductivity. To find the sweet spot for a potential market introduction of garnet-based solid-state batteries, scalable and industrially usable syntheses of LLZO with high processability and good conductivity are indispensable. In this study, four different synthesis methods (solid-state reaction (SSR), solution-assisted solid-state reaction (SASSR), co-precipitation (CP), and spray-drying (SD)) were used and compared for the synthesis of aluminum-substituted LLZO (Al:LLZO, Li6.4Al0.2La3Zr2O12), focusing on electrochemical performance on the one hand and scalability and environmental footprint on the other hand. The synthesis was successful via all four methods, resulting in a Li-ion conductivity of 2.0–3.3 × 10−4 S/cm. By using wet-chemical synthesis methods, the calcination time could be reduced from two calcination steps for 20 h at 850 °C and 1000 °C to only 1 h at 1000 °C for the spray-drying method. We were able to scale the synthesis up to a kg-scale and show the potential of the different synthesis methods for mass production.
000902373 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902373 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902373 7001_ $$0P:(DE-Juel1)177898$$aKüpers, Michael$$b1$$ufzj
000902373 7001_ $$0P:(DE-Juel1)169991$$aHäuschen, Grit$$b2$$ufzj
000902373 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3$$eCorresponding author
000902373 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b4$$ufzj
000902373 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000902373 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma14226809$$gVol. 14, no. 22, p. 6809 -$$n22$$p6809 -$$tMaterials$$v14$$x1996-1944$$y2021
000902373 8564_ $$uhttps://juser.fz-juelich.de/record/902373/files/materials-14-06809.pdf$$yOpenAccess
000902373 8767_ $$d2024-03-08$$eAPC$$jZahlung erfolgt$$zOABLE Report 03/24
000902373 909CO $$ooai:juser.fz-juelich.de:902373$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179291$$aForschungszentrum Jülich$$b0$$kFZJ
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177898$$aForschungszentrum Jülich$$b1$$kFZJ
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169991$$aForschungszentrum Jülich$$b2$$kFZJ
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b3$$kFZJ
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b4$$kFZJ
000902373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000902373 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902373 9141_ $$y2021
000902373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000902373 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902373 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2019$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902373 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000902373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902373 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902373 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902373 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902373 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000902373 920__ $$lyes
000902373 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902373 9801_ $$aFullTexts
000902373 980__ $$ajournal
000902373 980__ $$aVDB
000902373 980__ $$aUNRESTRICTED
000902373 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902373 980__ $$aAPC
000902373 981__ $$aI:(DE-Juel1)IMD-2-20101013