000902376 001__ 902376
000902376 005__ 20240712101027.0
000902376 0247_ $$2doi$$a10.5194/amt-2020-489
000902376 0247_ $$2Handle$$a2128/29002
000902376 037__ $$aFZJ-2021-04210
000902376 1001_ $$00000-0002-8860-441X$$aSchmitz, Seán$$b0$$eCorresponding author
000902376 245__ $$aUnraveling a black box: An open-source methodology for the field calibration of small air quality sensors
000902376 260__ $$c2021
000902376 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1636703842_30170
000902376 3367_ $$2ORCID$$aWORKING_PAPER
000902376 3367_ $$028$$2EndNote$$aElectronic Article
000902376 3367_ $$2DRIVER$$apreprint
000902376 3367_ $$2BibTeX$$aARTICLE
000902376 3367_ $$2DataCite$$aOutput Types/Working Paper
000902376 520__ $$aAbstract. The last two decades have seen substantial technological advances in the development of low-cost air pollution instruments using small sensors. While their use continues to spread across the field of atmospheric chemistry, the air quality monitoring community, as well as for commercial and private use, challenges remain in ensuring data quality and comparability of calibration methods. This study introduces a seven-step methodology for the field calibration of low-cost sensors using reference instrumentation with user-friendly guidelines, open access code, and a discussion of common barriers to such an approach. The methodology has been developed and is applicable for gas-phase pollutants, such as for the measurement of nitrogen dioxide (NO2) or ozone (O3). A full example of the application of this methodology to a case study in an urban environment using both Multiple Linear Regression (MLR) and the Random Forest (RF) machine-learning technique is presented with relevant R code provided, including error estimation. In this case, we have applied it to the calibration of metal oxide gas-phase sensors (MOS). Results reiterate previous findings that MLR and RF are similarly accurate, though with differing limitations. The methodology presented here goes a step further than most studies by including explicit, transparent steps for addressing model selection, validation, and tuning, as well as addressing the common issues of autocorrelation and multicollinearity. We also highlight the need for standardized reporting of methods for data cleaning and flagging, model selection and tuning, and model metrics. In the absence of a standardized methodology for the calibration of low-cost sensors, we suggest a number of best practices for future studies using low-cost sensors to ensure greater comparability of research.
000902376 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902376 588__ $$aDataset connected to CrossRef
000902376 7001_ $$0P:(DE-HGF)0$$aTowers, Sherry$$b1
000902376 7001_ $$00000-0002-1867-1879$$aVillena, Guillermo$$b2
000902376 7001_ $$00000-0003-3188-3371$$aCaseiro, Alexandre$$b3
000902376 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b4
000902376 7001_ $$0P:(DE-Juel1)16218$$aKlemp, Dieter$$b5$$ufzj
000902376 7001_ $$0P:(DE-HGF)0$$aLanger, Ines$$b6
000902376 7001_ $$0P:(DE-HGF)0$$aMeier, Fred$$b7
000902376 7001_ $$00000-0003-1386-285X$$avon Schneidemesser, Erika$$b8
000902376 773__ $$a10.5194/amt-2020-489
000902376 8564_ $$uhttps://juser.fz-juelich.de/record/902376/files/amt-2020-489.pdf$$yOpenAccess
000902376 909CO $$ooai:juser.fz-juelich.de:902376$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b4$$kFZJ
000902376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16218$$aForschungszentrum Jülich$$b5$$kFZJ
000902376 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902376 9141_ $$y2021
000902376 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902376 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902376 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902376 9801_ $$aFullTexts
000902376 980__ $$apreprint
000902376 980__ $$aVDB
000902376 980__ $$aUNRESTRICTED
000902376 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902376 981__ $$aI:(DE-Juel1)ICE-3-20101013