001     902379
005     20240711085639.0
024 7 _ |a 10.1088/2515-7655/ac2fb3
|2 doi
024 7 _ |a 2128/29087
|2 Handle
024 7 _ |a altmetric:115968622
|2 altmetric
024 7 _ |a WOS:000717798200001
|2 WOS
037 _ _ |a FZJ-2021-04213
082 _ _ |a 530
100 1 _ |a Quérel, Edouard
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The role of NaSICON surface chemistry in stabilizing fast-charging Na metal solid-state batteries
260 _ _ |a Bristol
|c 2021
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715083160_16042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state batteries (SSBs) with alkali metal anodes hold great promise as energetically dense andsafe alternatives to conventional Li-ion cells. Whilst, in principle, SSBs have the additionaladvantage of offering virtually unlimited plating current densities, fast charges have so far onlybeen achieved through sophisticated interface engineering strategies. With a combination ofsurface sensitive analysis, we reveal that such sophisticated engineering is not necessary inNaSICON solid electrolytes (Na3.4Zr2Si2.4P0.6O12) since optimised performances can be achievedby simple thermal treatments that allow the thermodynamic stabilization of a nanometric Na3PO4protective surface layer. The optimized surface chemistry leads to stabilized Na|NZSP interfaceswith exceptionally low interface resistances (down to 0.1 Ωcm2 at room temperature) and hightolerance to large plating current densities (up to 10 mA cm−2) even for extended cycling periodsof 30 min (corresponding to an areal capacity 5 mAh cm−2). The created Na|NZSP interfaces showgreat stability with increment of only up to 5 Ωcm2 after four months of cell assembly.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Seymour, Ieuan D
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cavallaro, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 4
|u fzj
700 1 _ |a Aguadero, Ainara
|0 0000-0001-7098-1033
|b 5
773 _ _ |a 10.1088/2515-7655/ac2fb3
|g Vol. 3, no. 4, p. 044007 -
|0 PERI:(DE-600)2950951-8
|n 4
|p 044007 -
|t JPhys energy
|v 3
|y 2021
|x 2515-7655
856 4 _ |u https://juser.fz-juelich.de/record/902379/files/Qu%C3%A9rel_2021_J._Phys._Energy_3_044007.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902379
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-ENERGY : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:01:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:01:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:01:43Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:01:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS-ENERGY : 2022
|d 2023-08-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21