001     902382
005     20230123110539.0
024 7 _ |a 10.1007/s00414-021-02736-3
|2 doi
024 7 _ |a 0044-3433
|2 ISSN
024 7 _ |a 0367-0031
|2 ISSN
024 7 _ |a 0937-9827
|2 ISSN
024 7 _ |a 1437-1596
|2 ISSN
024 7 _ |a 2128/30706
|2 Handle
024 7 _ |a altmetric:116315853
|2 altmetric
024 7 _ |a pmid:34739581
|2 pmid
024 7 _ |a WOS:000714849400001
|2 WOS
037 _ _ |a FZJ-2021-04216
082 _ _ |a 610
100 1 _ |a Becker, J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Evidence for differences in DNA methylation between Germans and Japanese
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645006847_15492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As a contribution to the discussion about the possible effects of ethnicity/ancestry on age estimation based on DNA methylation (DNAm) patterns, we directly compared age-associated DNAm in German and Japanese donors in one laboratory under identical conditions. DNAm was analyzed by pyrosequencing for 22 CpG sites (CpGs) in the genes PDE4C, RPA2, ELOVL2, DDO, and EDARADD in buccal mucosa samples from German and Japanese donors (N = 368 and N = 89, respectively).Twenty of these CpGs revealed a very high correlation with age and were subsequently tested for differences between German and Japanese donors aged between 10 and 65 years (N = 287 and N = 83, respectively). ANCOVA was performed by testing the Japanese samples against age- and sex-matched German subsamples (N = 83 each; extracted 500 times from the German total sample). The median p values suggest a strong evidence for significant differences (p < 0.05) at least for two CpGs (EDARADD, CpG 2, and PDE4C, CpG 2) and no differences for 11 CpGs (p > 0.3).Age prediction models based on DNAm data from all 20 CpGs from German training data did not reveal relevant differences between the Japanese test samples and German subsamples. Obviously, the high number of included "robust CpGs" prevented relevant effects of differences in DNAm at two CpGs.Nevertheless, the presented data demonstrates the need for further research regarding the impact of confounding factors on DNAm in the context of ethnicity/ancestry to ensure a high quality of age estimation. One approach may be the search for "robust" CpG markers-which requires the targeted investigation of different populations, at best by collaborative research with coordinated research strategies.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Böhme, P.
|b 1
700 1 _ |a Reckert, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eickhoff, S. B.
|0 P:(DE-Juel1)131678
|b 3
700 1 _ |a Koop, B. E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Blum, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gündüz, T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Takayama, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wagner, W.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ritz-Timme, S.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1007/s00414-021-02736-3
|0 PERI:(DE-600)1459222-8
|p 405–413
|t International journal of legal medicine
|v 136
|y 2022
|x 1437-1596
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902382/files/Becker2022_Article_EvidenceForDifferencesInDNAMet.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902382/files/Fig%201.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902382/files/Fig%202.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902382/files/Fig%203.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902382/files/Revision2_Germans%20versus%20Japanese_manuscript.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902382/files/Table%201.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902382/files/Table%202.xps
909 C O |o oai:juser.fz-juelich.de:902382
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J LEGAL MED : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21