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Abstract
As a contribution to the discussion about the possible effects of ethnicity/ancestry on age estimation based on DNA methyla-
tion (DNAm) patterns, we directly compared age-associated DNAm in German and Japanese donors in one laboratory under 
identical conditions. DNAm was analyzed by pyrosequencing for 22 CpG sites (CpGs) in the genes PDE4C, RPA2, ELOVL2, 
DDO, and EDARADD in buccal mucosa samples from German and Japanese donors (N = 368 and N = 89, respectively).
Twenty of these CpGs revealed a very high correlation with age and were subsequently tested for differences between Ger-
man and Japanese donors aged between 10 and 65 years (N = 287 and N = 83, respectively). ANCOVA was performed by 
testing the Japanese samples against age- and sex-matched German subsamples (N = 83 each; extracted 500 times from the 
German total sample). The median p values suggest a strong evidence for significant differences (p < 0.05) at least for two 
CpGs (EDARADD, CpG 2, and PDE4C, CpG 2) and no differences for 11 CpGs (p > 0.3).
Age prediction models based on DNAm data from all 20 CpGs from German training data did not reveal relevant differ-
ences between the Japanese test samples and German subsamples. Obviously, the high number of included “robust CpGs” 
prevented relevant effects of differences in DNAm at two CpGs.
Nevertheless, the presented data demonstrates the need for further research regarding the impact of confounding factors on 
DNAm in the context of ethnicity/ancestry to ensure a high quality of age estimation. One approach may be the search for 
“robust” CpG markers—which requires the targeted investigation of different populations, at best by collaborative research 
with coordinated research strategies.
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Introduction

Epigenetic age estimation based on DNA methylation 
(DNAm) holds the perspective of various forensic applica-
tions, e.g., for age estimation in persons without valid iden-
tity documents, the identification of unknown deceased, or 
the identification of the donor of a trace. Many models for 
the estimation of chronological age based on DNA methyla-
tion have been proposed [1–4]; the best of them enabling age 
estimation with mean absolute errors (MAE) of approxi-
mately 3–5 years [5–8].

However, there is a growing perception that DNA meth-
ylation may be influenced by exogenous and endogenous 
factors (for review, see [9–11]) that may be of relevance for 
age estimation based on DNAm. Against this background, 
Spolnicka et al. [12] claimed that “studies aiming to iden-
tify all potential players influencing differences in DNA 
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methylation at particular loci between individuals at the 
same chronological age are important […] for better accu-
racy of age prediction models.”

In this context, the question of population-related differ-
ences in DNAm patterns and their impact on forensic age 
estimation has already been addressed [13–15]. Such dif-
ferences may be even present at birth [16]. An association 
between DNAm, histone modifications, and single-nucle-
otide polymorphisms (SNP) located at specific CpG sites 
(CpGs) has been interpreted as evidence for the genetic 
control of DNA methylation [17, 18]. Since SNP allele fre-
quencies may differ considerably among populations of dif-
ferent ancestries, population-related differences in DNAm 
have been attributed to differences in population-specific 
alleles or haplotypes [19–21]. Apart from such genetic fac-
tors, lifestyle and environmental factors may alter the DNAm 
pattern. There is strong evidence for such influences from 
many studies (for review, see [11, 22, 23]). Although the 
underlying mechanisms are not yet fully understood, there 
is evidence that genetic variations as well as living condi-
tions (both addressed as “ethnicity/ancestry” in the follow-
ing) may impact DNAm levels and induce population-related 
differences [11, 22–24].

Such differences in age-associated DNAm changes 
between different populations have been described [20, 
24–27], and their impact on forensic age estimation based 
on DNAm has already been discussed [13–15]. Some of 
these studies were based on the comparison of available Illu-
mina BeadChip datasets of different groups, which may have 
batch effects that hamper a reliable comparison [24]. In sev-
eral studies, already developed models were applied by other 
laboratories to another population, meaning that the samples 
of the two populations were analyzed in different labs [13, 
14]. However, this approach cannot distinguish between 
methodological and actual population-related differences.

To gain further insight into the relevance of different 
populations for targeted epigenetic age predictors, DNAm 
was analyzed by pyrosequencing for 22 CpGs of five genes 
(PDE4C, RPA2, ELOVL2, DDO, and EDARADD) in buc-
cal mucosa samples from German and Japanese donors, 
applying an identical methodological protocol by only one 
laboratory.

Material and methods

Sample collection

Buccal mucosa samples were collected from 368 German 
donors (203 females, 165 males; ages between 1 month and 
94 years) from Germany, mainly from North Rhine-West-
phalia and from 89 Japanese donors (55 females, 34 males; 
ages between 8 and 87 years) after written consent. Twelve of 

the Japanese donors had been living in Düsseldorf/Germany 
for several years at the time of sampling. The majority of the 
remaining 77 Japanese samples were taken in Fukuoka Pre-
fecture (N = 59), the rest of the samples came from donors liv-
ing in Ehime (N = 9), Shizuoka (N = 5), and Miyazaki (N = 3) 
Prefectures, respectively. For one sample, the exact sampling 
location was unknown.

DNA extraction, quantification, and bisulfite 
conversion

Genomic DNA from buccal swab samples of both groups 
was extracted using the NucleoSpin® Tissue Kit from Mach-
erey–Nagel (Düren/Germany) according to the manufacturer’s 
instructions with overnight lysis at 56 °C. DNA was eluted 
in 100 µl BE buffer (as part of the extraction kit) and DNA 
extracts were stored at − 20 °C until further analysis. Quan-
titation was performed following manufacturer’s instructions 
using either the Applied Biosystems™ 7500 Real-Time PCR 
System (Waltham, Massachusetts/USA) and the Quantiplex® 
ProKit (Qiagen, Hilden/Germany) or the QuantiFluor dsDNA 
Sample Kit (Promega, Madison, Wisconsin/USA) and Quan-
tus Fluorometer (Promega, Madison, Wisconsin/USA).

Bisulfite conversion was performed using either the EZ 
DNA Methylation-Gold™ Kit (Zymo Research, Irvine, Cali-
fornia/USA) or the EpiTect Fast DNA Bisulfite Kit (Qiagen, 
Hilden/Germany), following the manufacturer’s instructions. 
If possible, the recommended amount of 200 ng to 500 ng 
input DNA was used but not less than 10 ng per reaction 
volume (as recommended in [28]).

DNA methylation analysis by pyrosequencing (CpGs 
located in the genes PDE4C, RPA2, ELOVL2, DDO, 
and EDARADD)

Prior pyrosequencing marker-specific PCRs were performed 
either using the HotStarTaq Kit (Qiagen, Hilden/Germany) 
or the PyroMark PCR Kit (Qiagen, Hilden/Germany) under 
manufacturer’s conditions. Primer sequences were taken 
from the original papers [29–31]. Hereafter, 10–20 µl of 
biotinylated PCR product was immobilized to 1 μl Strepta-
vidin Sepharose™HP beads (GE Healthcare, Chicago, Illi-
nois/USA). Sequencing primers were designed as described 
previously [29–31]. Pyrosequencing was performed using 
the PyroMark Q24 Advanced CpG Reagents Kit (Qiagen, 
Hilden/Germany) and the PyroMark Q24 Advanced System 
(Qiagen, Hilden/Germany).

Testing for differences between DNAm in German 
and Japanese samples

In both donor groups, the relationship between DNAm and 
chronological age was analyzed by linear regression. For 
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all CpGs (located in the genes PDE4C, RPA2, ELOVL2, 
EDARADD, and DDO), Spearman correlation coefficients 
(R) were calculated.

Due to the low number of Japanese individuals younger 
than 10 years and older than 65 years, only German and 
Japanese individuals with ages between 10 and 65 years 
(N = 287, N = 83, respectively) were included in all further 
analyses.

ANCOVA was performed to detect differences between 
the DNAm levels in the two populations; at a p value < 0.05, 
the results were considered significant. To further address 
the effects of different samples sizes and compositions, 
ANCOVA was performed by testing the Japanese sample 
(N = 83) against age- and sex-matched (all p > 0.3) German 
subsamples (N = 83 each) that were extracted 500 times from 
the total German group. The medians of these 500 runs were 
calculated.

Age estimation based on German training data: 
modeling

Modeling was based only on the data of individuals with 
ages between 10 and 65 years and on all CpGs except for 
ELOVL2, CpG 7, and DDO, CpG 1 (exhibiting the weakest 
correlations between DNAm and age with R < 0.75).

Age prediction models were trained using a random for-
est algorithm with (chronological) age as the continuous 
target variable as well as the 20 CpG information and sex 
as features for prediction. The prediction forest consisted 
of 10.000 individual trees that were built from bootstrap 
samples of the entire dataset using the curvature test. This 
test selected the split predictor that minimizes the p value 
of chi-square tests of independence between each predictor, 
i.e., feature, and the response, i.e., age.

Modeling was based on training data consisting of the 
data of the German donors under the exclusion of extracted 
German test samples (see below), resulting in a strict sepa-
ration between training and test data. The performance of 
the models was tested (a) in the Japanese sample (N = 83; 
Japanese test sample) and (b) in age- and sex-matched (all 
p > 0.3) German subsamples (N = 83 each).

Age estimation based on German training data: 
performance on the Japanese sample and on age‑ 
and sex‑matched German test samples

As a measure of prediction accuracy, the mean absolute 
errors (MAE) were calculated. The performance of age 
estimation based on the German training data was tested 
in the Japanese sample (Japanese test sample) and in age- 
and sex-matched German test samples, respectively. To 
minimize sampling effects, we did not rely on randomiz-
ing the German data into one training and one test set but 

extracted 83 German test samples 500 times from the total 
German sample. The 83 German test samples and the 83 
Japanese samples were age- and sex-matched, each. Means 
and medians of the resulting 500 MAEs were calculated for 
each group.

To detect biases with the consequence of systematic over- 
or underestimation, the mean deviation of the age gaps (the 
differences between estimated and chronological ages) was 
calculated for all 500 runs; the means and medians of the 
resulting 500 mean deviations were calculated in each group.

Results

Buccal swabs from German and Japanese donors: 
very similar correlation between DNAm levels 
and age but evidence for significant differences 
in DNAm at least at two CpG sites

Analysis of the German and Japanese samples revealed 
age-associated DNAm levels and a mostly close correla-
tion between DNAm and age in both donor groups, with 
similar correlation coefficients (Spearman R) between 0.95 
(PDE4C, CpG1) and 0.67 (ELOVL2, CpG 7) in Germans 
and between 0.93 (PDE4C, CpG 1) and—0.62 (DDO, CpG 
1) in Japanese, respectively (Table 1). In both donor groups, 
DNAm levels increase at the CpGs of ELOVL2, PDE4C, and 
RPA2 and decrease at EDARADD and DDO with increas-
ing age (data for DDO and the CpGs of ELOVL2, PDE4C, 
EDARADD, and RPA2 with the highest correlations between 
DNAm and age in Fig. 1, for additional data see Supplemen-
tary file, Table 3). 

CpG 7 in ELOVL2 and CpG 1 in DDO exhibited the 
weakest correlations between DNAm and age, with R < 0.75. 
These CpGs were excluded from further analysis.

The DNAm data for the 12 Japanese living in Germany 
(highlighted in Fig. 1) appear to be very similar to those of 
equally old Japanese living in Japan. Due to the low number 
of cases, no further statistical analysis was performed on 
this question.

Despite the very similar correlation between DNAm 
and age in Germans and Japanese, there was evidence for 
significant differences in DNAm at least at two sites. An 
ANCOVA using the Japanese data and the data of age- 
and sex-matched German subsamples revealed median 
p values of < 0.05 after 500 runs for PDE4C (CpG 2), 
RPA2 (CpG3), and EDARADD (CpG 2). A median p value 
close to 0.05 (0.0512) was calculated for ELOVL2 (CpG 
8) (Table 2). The significance between the groups was 
most evident for EDARADD, CpG 2 (median p = 0.0061, 
p < 0.05 in 88.60% of 500 runs/subsamples) and PDE4C, 
CpG 2 (median p = 0.0132, p < 0.05 in 79.16% of 500 
runs/subsamples). On the other hand side, median p 
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values of > 0.3 were calculated for 11 of the analyzed 
CpGs (Table 2), indicating clearly no differences between 
Japanese and Germans.

Age prediction by models based on German 
training data did not reveal relevant differences 
between the Japanese sample and the age‑and 
sex‑matched German test samples

The means and medians of the MAEs calculated in 500 
runs for the Japanese sample (Japanese test sample) and 
500 different extracted age- and sex-matched German 
test samples were very similar (Germans: 4.14  years 
(mean), 4.14 years (median); Japanese: 4.38 years (mean), 
4.38 years (median); Fig. 2).

There was no clear indication for biases resulting in a 
relevant systematic over- or underestimation of age, since 
the means as well as the medians of the mean deviation 
of the age gaps (from 500 runs) were very low in both 
test groups (Germans: 0.39  years (mean), 0.39  years 
(median); Japanese: − 0.40 years (mean), − 0.39 years 
(median); Fig. 3).

Discussion

The primary aim of this study was to contribute to the dis-
cussion about the possible effects of ethnicity/ancestry on 
age estimation based on DNAm by a direct comparison of 
DNAm patterns in German and Japanese samples that were 
analyzed in one lab under identical conditions. However, due 
to the interindividual variability of DNAm within a popu-
lation [32–34], very large numbers of samples have to be 
analyzed to reliably prove differences between populations. 
Thus, the numbers of samples analyzed here (287 German 
samples, 83 Japanese samples in the age range 10–65 years) 
is a clear limitation of this study. Moreover, the size and the 
composition of the two groups were very different.

To overcome these limitations at least partly, we did 
not compare the Japanese group with only one age- and 
sex-matched German group, but with 500 age- and sex-
matched German subgroups that were extracted from the 
total German group. The median p values of 500 ANCOVA 
analyses allow much more robust conclusions than the p 
values derived from just one analysis that includes only 
one randomly extracted German subgroup.

Table 1   Analyzed CpGs (in 
the genes PDE4C, ELOVL2, 
RPA2, EDARADD, and DDO) 
and Spearman correlation 
coefficients (R) for the 
relationship between DNA 
methylation and age in German 
and in Japanese samples

Spearman correlation 
coefficient R

Marker Chromosomal location 
(GRCh38.p13)

Position in 
450 K array

CpG site German 
(N = 287)

Japanese 
(N = 89)

PDE4C [31] Chr.19: 18,233,106 CpG 1 0.95 0.93
Chr.19: 18,233,092 cg17861230 CpG 2 0.88 0.81
Chr.19: 18,233,083 CpG 3 0.82 0.88
Chr.19: 18,233,080 CpG 4 0.84 0.82
Chr.19: 18,233,071 CpG 5 0.81 0.86
Chr.19: 18,233,059 CpG 6 0.81 0.83
Chr.19: 18,233,049 CpG 7 0.85 0.85

ELOVL2 [29] Chr.6: 11,044,625 CpG 1 0.90 0.89
Chr.6: 11,044,629 CpG 2 0.89 0.79
Chr.6: 11,044,631 CpG 3 0.85 0.83
Chr.6: 11,044,640 CpG 4 0.86 0.84
Chr.6: 11,044,642 CpG 5 0.90 0.86
Chr.6: 11,044,645 cg16867657 CpG 6 0.83 0.85
Chr.6: 11,044,648 CpG 7 0.67 0.73
Chr.6: 11,044,664 CpG 8 0.80 0.78
Chr.6: 11,044,683 CpG 9 0.84 0.79

RPA2 [29] Chr.1: 27,915,022 CpG 1 0.89 0.81
Chr.1: 27,915,024 CpG 2 0.89 0.83
Chr.1: 27,915,067 cg25410668 CpG 3 0.84 0.75

EDARADD [30] Chr.1: 236,394,371 cg09809672 CpG 1 -0.85 -0.77
Chr.1: 236,394,383 CpG 2 -0.86 -0.81

DDO [29] Chr.6: 110,415,571 cg02872426 CpG 1 -0.73 -0.62
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The strategy of subsampling was also applied in testing 
the performance of age prediction (based on the German 
training data set) in German test groups versus the Japanese 
test group. In each run, the model for age estimation was 
calculated only on the basis of the remaining training data, 
thus allowing a strict separation between training data and 
test data. That means that age estimation was performed 
in the Japanese test sample and in age- and sex-matched 
German test samples by 500 different models. The median 
MAEs give a robust impression of the performance of age 
estimation in the German and Japanese group. This strategy 
is an approach to reduce the impact of sampling effects, if 
the number of samples is limited.

The methodological approach of subsampling may be 
unusual and does not allow to present one model for age 
estimation (since, in fact 500 models were used). However, 
the aim of our work was not the presentation of a new model 
but to gain further insight into the question of the relevance 
of ethnicity/ancestry for age estimation based on DNAm.

In both German and Japanese samples, the DNA-methyl-
ation levels in buccal swabs were age-associated at all ana-
lyzed CpGs (in PDE4C, RPA2, ELOVL2, EDARADD, and 

DDO). This finding was to be expected, since similar data 
have already been published [5, 13, 29–31]. Differences in 
correlation coefficients (Table 1) were only small and may 
not be overinterpreted in light of the different (and in the 
Japanese group) limited number of samples in the donor 
groups.

Although the correlation between DNAm and age was 
very similar in Germans and Japanese, there was evidence 
of differences between the two groups in DNAm at some 
CpGs sites, most noticeable in EDARADD (CpG 2) and 
PDE4C (CpG 2). For these sites, the median p values of 
the 500 ANOVAs were p = 0.0061 (EDARADD (CpG 2)) 
and 0.0132 (PDE4C (CpG 2)); p values < 0.05 were calcu-
lated in 88.60% and 79.16% of the 500 runs, respectively 
(Table 2). These results can be interpreted as strong evidence 
for significant differences of DNAm at EDARADD (CpG 2) 
and PDE4C (CpG 2). The ANCOVA results for CpG 3 in 
RPA2 (median p value of 0.0391, p values < 0.05 in 56.88% 
of the 500 runs) at least suggest differences between the 
two groups.

One can only speculate about the biological back-
ground of such differences in the DNA methylation pattern 

Fig. 1   DNA methylation levels 
(in PDE4C (CpG 1), ELOVL2 
(CpG 1), RPA2 (CpG 2), 
EDARADD (CpG 2), DDO 
(CpG 1)) in buccal mucosa 
samples from German (gray, 
N = 368) and Japanese donors 
(N = 89, Japanese donors liv-
ing in Japan = blue (N = 77), 
Japanese donors living in 
Germany = orange (N = 12). 
For genes with more than one 
analysed CpG site, the data 
for the CpGs with the highest 
correlation coefficients (R) are 
presented. Correlation coef-
ficients (R) for German donors: 
R(PDE4C, CpG 1) = 0.95, 
R(ELOVL2, CpG 1) = 0.90, 
R(RPA2, CpG 2) = 0.89, 
R(EDARADD, 
CpG 2) =  − 0.86, 
R(DDO CpG 1) =—0.73. 
Correlation coefficients 
(R) for Japanese donors: 
R(PDE4C, CpG 1) = 0.93, 
R(ELOVL2, CpG 1) = 0.89, 
R(RPA2, CpG 2) = 0.83, 
R(EDARADD, 
CpG 2) =  − 0.81, 
R(DDO CpG 1) =  − 0.62
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between Germans and Japanese. Basically, genetic vari-
ations as well as living conditions may play a role [11, 
22, 23]. The Japanese population may be genetically 
more homogeneous than other populations [35–37]. If so, 
also genetically determined DNA methylation patterns 
may be more homogeneous in the Japanese population, 
making differences to other populations more prominent. 
The finding that the DNAm data for the Japanese living 
in Germany appeared to be within the range of the other 
Japanese data may be another indication for the relevance 
of genetic factors; however, only 15 Japanese living in 
Germany were examined. It would be interesting to con-
duct further research on this topic under the inclusion of 
a higher number of cases.

If there is evidence for differences in the DNA methyla-
tion pattern at some CpGs, the question arises, if this may 
be relevant for age estimation models that include DNAm 
data of such CpGs. Our results demonstrated that means and 
medians of the MAEs were very similar in the German and 
Japanese cohort, and there was no clear indication for biases 

resulting in a relevant systematic over- or underestimation 
of age.

These findings do not contradict the evidence for signifi-
cant differences in the DNAm levels at some CpGs in dif-
ferent genes. The age prediction models were based on data 
of 20 CpGs, for only two (to three) of them the ANCOVA 
analyses revealed evidence for differences between Japa-
nese and Germans. Obviously, the high number of included 
“robust CpGs” (11 CpGs exhibited median p values > 0.3, 
see Table 2) prevented relevant effects of the differences in 
DNAm at two CpGs.

Nevertheless, our findings emphasize the impact of the 
ethnicity/ancestry on DNAm and are in line with the find-
ings of other groups. Cho et al. [14] applied the age predic-
tion model of Zbieć-Piekarska et al. [38] (derived from a 
Polish population, markers located in the genes ELOVL2, 
C1orf132, TRIM59, KLF14, and FHL2 genes) to blood sam-
ples from 100 Koreans. The authors reported that the age 
predictive performance of the model “is relatively consistent 
across different population groups,” although “the extent of 
the age association in Koreans was not identical to that of 
the Polish,” in particular at the loci FHL2 and C1orf132. 

Table 2   Results of the statistical testing for differences in DNA meth-
ylation (ANCOVA, Japanese sample (N = 83) versus age- and sex-
matched German subsamples (N = 83 each)):

Strong evidence for significant differences for PDE4C, CpG2 and 
EDARADD, CpG 2 (highlighted in gray and bold, median p < 0.05, 
high percentages of analyses with p < 0.05), some evidence for sig-
nificant differences also for RPA2, CpG3 (highlighted in grey, median 
p < 0.05, in more than 50% of the runs with p < 0.05), no evidence for 
differences (p > 0.3, marked with an asterisk)

Marker CpG site Median
p values

Percentage of runs with 
p < 0.05 (of 500 ANCOVA 
analyses)

PDE4C *CpG 1 0.3081 8.74%
CpG 2 0.0132 79.16%
CpG 3 0.1464 23.78%
*CpG 4 0.5938 0.94%
*CpG 5 0.6283 0.68%
*CpG 6 0.4850 2.52%
*CpG 7 0.6040 1.36%

ELOVL2 *CpG 1 0.5537 1.74%
*CpG 2 0.5281 1.68%
*CpG 3 0.3686 7.60%
CpG 4 0.2643 12.02%
*CpG 5 0.4390 2.84%
CpG 6 0.1814 19.30%
CpG 8 0.0512 49.20%
CpG 9 0.0932 33.60%

RPA2 *CpG 1 0.4528 1.50%
*CpG 2 0.5426 1.98%
CpG 3 0.0391 56.88%

EDARADD CpG 1 0.0661 41.72%
CpG 2 0.0061 88.60%

Fig. 2   Mean absolute errors (MAE, in years) of age estimation based 
on the German trainings data (“German” = German test subsamples 
(N = 83 each), “Japanese” = Japanese sample (N = 83)). Modeling was 
based on the German training data under exclusion of 500 extracted 
age- and sex-matched German test subsamples, respectively. The fig-
ure depicts the MAEs for 500 analyses for each group; the greater 
scattering of MAEs in the Germans is due to the extraction of 500 
different German test groups, whereas the Japanese test group is the 
same group in all 500 analyses
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Fleckhaus et al. [15] analyzed DNAm at five CpG sites in 
the genes ASPA, ITGA2B, PDE4C, and ELOVL2 in buccal 
mucosa samples of three independent population groups 
from the Middle East, West Africa, and Central Europe 
and reported “first evidence that the strength of correla-
tion between methylation and chronological age and thus 
the accuracy of age prediction may vary between popula-
tions.” Thong et al. [13] analyzed blood samples from a local 
population comprising Chinese, Malays, and Indians (CpG 
sites in the genes ELOVL2, KLF14, TRIM59, and FHL2) and 
established age prediction models on the basis of the data 
from all three subpopulations. Using this model, they did not 
observe significant age prediction errors among the Chinese, 
Malays, and Indians. In contrast, notable differences in pre-
diction accuracy were observed when the model was applied 
to a Polish and a French population (by using DNAm data 
reported by [5, 38]), the Polish samples were systematically 
underestimated. As possible reasons for these differences, 
the authors propose “methodology and instrumental vari-
ations during bisulfite conversion and/or pyrosequencing.”

Such methodological effects can be excluded for the here 
presented data of buccal mucosa samples of German and 
Japanese donors. These data suggest significant differences 

between the investigated populations in the methylation of at 
least two analyzed CpGs (EDARADD (CpG 2) and PDE4C 
(CpG 2)). Based on the presented data it cannot deduced, 
if the findings are just a matter of these two populations 
(Germans/Japanese), the very possibility of such a problem 
should lead to caution.

Forensic science should further address the influence of 
ethnicity/ancestry to optimize the potential of age estimation 
based on DNAm; a need for research has been already stated 
by others [9, 13, 15, 39, 40]. Thong et al. [13] suggested the 
retraining of age prediction models, if they are to be applied 
to individuals of other populations. This suggestion implies 
that retrained models are developed for all relevant popula-
tions and that the assignment of an unknown donor of a 
trace or a non-identified deceased to a specific population is 
known. Fleckhaus et al. [15] proposed “to include ancestry 
informative markers into the analysis as an additional fac-
tor for age prediction models.” Another approach would be 
to identify “robust” CpGs as basis for age prediction mod-
els that can be used regardless of the population of origin. 
Whatever approach is chosen, the targeted investigations of 
different populations are required at best by collaborative 
research with coordinated research strategies.
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Fig. 3   Mean deviation of the age gaps (difference between estimated 
and chronological ages, in years) after age estimation of the Japanese 
group (N = 83) and German test subsamples (N = 83 each) based on 
the German trainings data. Modeling was based on the German train-
ing data under exclusion of 500 extracted age- and sex-matched Ger-
man subsamples, respectively. The figure depicts the mean deviations 
after 500 analyses for each group; the greater scattering of the Ger-
man data is due to the extraction of 500 different German test groups, 
whereas the Japanese test group is the same group in all 500 analyses
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