000902384 001__ 902384
000902384 005__ 20240709081834.0
000902384 0247_ $$2doi$$a10.1016/j.scitotenv.2021.148868
000902384 0247_ $$2ISSN$$a0048-9697
000902384 0247_ $$2ISSN$$a1879-1026
000902384 0247_ $$2Handle$$a2128/29538
000902384 0247_ $$2pmid$$a34384967
000902384 0247_ $$2WOS$$aWOS:000702510000005
000902384 037__ $$aFZJ-2021-04218
000902384 082__ $$a610
000902384 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0$$ufzj
000902384 245__ $$aDirect evidence of local photochemical production driven ozone episode in Beijing: A case study
000902384 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000902384 3367_ $$2DRIVER$$aarticle
000902384 3367_ $$2DataCite$$aOutput Types/Journal article
000902384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640007848_23727
000902384 3367_ $$2BibTeX$$aARTICLE
000902384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902384 3367_ $$00$$2EndNote$$aJournal Article
000902384 520__ $$aWe present a comprehensive field campaign conducted in Beijing, September 2016, to elucidate the photochemical smog pollution, i.e. Ozone (O3). The observed daily maximum hydroxyl radical (OH) and hydroperoxy radical (HO2) concentrations were up to 1 × 107 cm-3 and 6 × 108 cm-3, respectively, indicating the active photochemistry in autumn Beijing. Photolysis of nitrous acid (HONO) and O3 contributed 1-2 ppbv h-1 to OH primary production during daytime. OH termination were dominated by the reaction with nitric oxide (NO) and nitrogen dioxide (NO2), which were in general larger than primary production rates, indicating other primary radical sources maybe important. The measurement of radicals facilitates the direct determination of local ozone production rate P (Ox) (Ox = O3 + NO2). The integrated P(Ox) reached 75 ppbv in afternoon (for 4 h) when planetary boundary layer was well developed. At the same time period, the observed total oxidant concentrations Ox, increased significantly by 70 ppbv. In addition, the Ox measurement showed compact increase in 12 stations both temporally and spatially in Beijing, indicating that active photochemical production happened homogenously throughout the city. The back-trajectory analysis showed that Beijing was isolated from the other cities during the episode, which further proved that the fast ozone pollution was contributed by local photochemical production rather than regional advection.
000902384 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902384 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902384 7001_ $$0P:(DE-Juel1)168298$$aMa, Xuefei$$b1
000902384 7001_ $$0P:(DE-Juel1)6776$$aLu, Keding$$b2$$eCorresponding author
000902384 7001_ $$0P:(DE-HGF)0$$aJiang, Meiqing$$b3
000902384 7001_ $$0P:(DE-HGF)0$$aZou, Qi$$b4
000902384 7001_ $$0P:(DE-HGF)0$$aWang, Haichao$$b5
000902384 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b6
000902384 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b7$$eCorresponding author
000902384 773__ $$0PERI:(DE-600)1498726-0$$a10.1016/j.scitotenv.2021.148868$$gVol. 800, p. 148868 -$$p148868 -$$tThe science of the total environment$$v800$$x0048-9697$$y2021
000902384 8564_ $$uhttps://juser.fz-juelich.de/record/902384/files/Tan%20ScienceTotalEniviron%202021.pdf$$yPublished on 2021-08-05. Available in OpenAccess from 2023-08-05.
000902384 909CO $$ooai:juser.fz-juelich.de:902384$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000902384 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902384 9141_ $$y2021
000902384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000902384 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902384 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TOTAL ENVIRON : 2019$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI TOTAL ENVIRON : 2019$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000902384 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000902384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000902384 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902384 9801_ $$aFullTexts
000902384 980__ $$ajournal
000902384 980__ $$aVDB
000902384 980__ $$aUNRESTRICTED
000902384 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902384 981__ $$aI:(DE-Juel1)ICE-3-20101013