001     902384
005     20240709081834.0
024 7 _ |a 10.1016/j.scitotenv.2021.148868
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/29538
|2 Handle
024 7 _ |a 34384967
|2 pmid
024 7 _ |a WOS:000702510000005
|2 WOS
037 _ _ |a FZJ-2021-04218
082 _ _ |a 610
100 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 0
|u fzj
245 _ _ |a Direct evidence of local photochemical production driven ozone episode in Beijing: A case study
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640007848_23727
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a comprehensive field campaign conducted in Beijing, September 2016, to elucidate the photochemical smog pollution, i.e. Ozone (O3). The observed daily maximum hydroxyl radical (OH) and hydroperoxy radical (HO2) concentrations were up to 1 × 107 cm-3 and 6 × 108 cm-3, respectively, indicating the active photochemistry in autumn Beijing. Photolysis of nitrous acid (HONO) and O3 contributed 1-2 ppbv h-1 to OH primary production during daytime. OH termination were dominated by the reaction with nitric oxide (NO) and nitrogen dioxide (NO2), which were in general larger than primary production rates, indicating other primary radical sources maybe important. The measurement of radicals facilitates the direct determination of local ozone production rate P (Ox) (Ox = O3 + NO2). The integrated P(Ox) reached 75 ppbv in afternoon (for 4 h) when planetary boundary layer was well developed. At the same time period, the observed total oxidant concentrations Ox, increased significantly by 70 ppbv. In addition, the Ox measurement showed compact increase in 12 stations both temporally and spatially in Beijing, indicating that active photochemical production happened homogenously throughout the city. The back-trajectory analysis showed that Beijing was isolated from the other cities during the episode, which further proved that the fast ozone pollution was contributed by local photochemical production rather than regional advection.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ma, Xuefei
|0 P:(DE-Juel1)168298
|b 1
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 2
|e Corresponding author
700 1 _ |a Jiang, Meiqing
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zou, Qi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Haichao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.scitotenv.2021.148868
|g Vol. 800, p. 148868 -
|0 PERI:(DE-600)1498726-0
|p 148868 -
|t The science of the total environment
|v 800
|y 2021
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/902384/files/Tan%20ScienceTotalEniviron%202021.pdf
|y Published on 2021-08-05. Available in OpenAccess from 2023-08-05.
909 C O |o oai:juser.fz-juelich.de:902384
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173726
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21