001     902385
005     20240712101027.0
024 7 _ |a 10.1021/acs.est.1c04489
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a 2128/29345
|2 Handle
024 7 _ |a 34623137
|2 pmid
024 7 _ |a WOS:000710453500032
|2 WOS
037 _ _ |a FZJ-2021-04219
082 _ _ |a 333.7
100 1 _ |a Qu, Hang
|0 0000-0002-2924-2826
|b 0
245 _ _ |a Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production
260 _ _ |a Columbus, Ohio
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638853336_11953
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photolysis of oxygenated volatile organic compounds (OVOCs) produces a primary source of free radicals, including OH and inorganic and organic peroxy radicals (HO2 and RO2), consequently increasing photochemical ozone production. The amplification of radical cycling through OVOC photolysis provides an important positive feedback mechanism to accelerate ozone production. The large production of OVOCs near the surface helps promote photochemistry in the whole boundary layer. This amplifier effect is most significant in regions with high nitrogen oxides (NOx) and VOC concentrations such as Wangdu, China. Using a 1-D model with comprehensive observations at Wangdu and the Master Chemical Mechanism (MCM), we find that OVOC photolysis is the largest free-radical source in the boundary layer (46%). The condensed chemistry mechanism we used severely underestimates the OVOC amplifier effect in the boundary layer, resulting in a lower ozone production rate sensitivity to NOx emissions. Due to this underestimation, the model-simulated threshold NOx emission value, below which ozone production decreases with NOx emission decrease, is biased low by 24%. The underestimated OVOC amplifier effect in a condensed mechanism implies a low bias in the current 3-D model-estimated efficacy of NOx emission reduction on controlling ozone in polluted urban and suburban regions of China.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Yuhang
|0 0000-0002-7290-2551
|b 1
|e Corresponding author
700 1 _ |a Zhang, Ruixiong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Liu, Xiaoxi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huey, Lewis Gregory
|0 0000-0002-0518-7690
|b 4
700 1 _ |a Sjostedt, Steven
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 7
700 1 _ |a Wu, Yusheng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shao, Min
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hu, Min
|0 0000-0003-4816-9123
|b 10
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 11
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 12
700 1 _ |a Broch, Sebastian
|0 P:(DE-Juel1)7591
|b 13
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 14
700 1 _ |a Zhu, Tong
|0 0000-0002-2752-7924
|b 15
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1021/acs.est.1c04489
|g Vol. 55, no. 20, p. 13718 - 13727
|0 PERI:(DE-600)1465132-4
|n 20
|p 13718 - 13727
|t Environmental science & technology
|v 55
|y 2021
|x 1520-5851
856 4 _ |y Published on 2021-10-08. Available in OpenAccess from 2022-10-08.
|u https://juser.fz-juelich.de/record/902385/files/Qu_etal_2021_acceptedVersion.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902385/files/acs.est.1c04489.pdf
909 C O |o oai:juser.fz-juelich.de:902385
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)173726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21