000902389 001__ 902389
000902389 005__ 20240712101027.0
000902389 0247_ $$2doi$$a10.5194/acp-21-15259-2021
000902389 0247_ $$2ISSN$$a1680-7316
000902389 0247_ $$2ISSN$$a1680-7324
000902389 0247_ $$2Handle$$a2128/29024
000902389 0247_ $$2altmetric$$aaltmetric:115127525
000902389 0247_ $$2WOS$$aWOS:000709368200001
000902389 037__ $$aFZJ-2021-04223
000902389 082__ $$a550
000902389 1001_ $$0P:(DE-Juel1)184748$$aMahnke, Christoph$$b0$$eCorresponding author
000902389 245__ $$aThe Asian tropopause aerosol layer within the 2017 monsoon anticyclone: microphysical properties derived from aircraft-borne in situ measurements
000902389 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000902389 3367_ $$2DRIVER$$aarticle
000902389 3367_ $$2DataCite$$aOutput Types/Journal article
000902389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636728724_21147
000902389 3367_ $$2BibTeX$$aARTICLE
000902389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902389 3367_ $$00$$2EndNote$$aJournal Article
000902389 520__ $$aThe Asian summer monsoon is an effective pathway for aerosol particles and precursors from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA), called the Asian tropopause aerosol layer (ATAL), has been observed by satellites. We discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the AMA region. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (maximum altitude reached of ∼20.5 km) were conducted with a modified ultra-high-sensitivity aerosol spectrometer – airborne (UHSAS-A; particle diameter detection range of 65 nm to 1 µm), the COndensation PArticle counting System (COPAS, detecting total concentrations of submicrometer-sized particles), and the New Ice eXpEriment – Cloud and Aerosol Spectrometer with Detection of POLarization (NIXE-CAS-DPOL). In the COPAS and UHSAS-A vertical particle mixing ratio (PMR) profiles and the size distribution profiles (for number, surface area, and volume concentration), the ATAL is evident as a distinct layer between ∼370 and 420 K potential temperature (Θ). Within the ATAL, the maximum detected PMRs (from the median profiles) were ∼700 mg−1 for particle diameters between 65 nm and 1 µm (UHSAS-A) and higher than 2500 mg−1 for diameters larger than 10 nm (COPAS). These values are up to 2 times higher than those previously found at similar altitudes in other tropical locations. The difference between the PMR profiles measured by the UHSAS-A and the COPAS indicate that the region below the ATAL at Θ levels from 350 to 370 K is influenced by the nucleation of aerosol particles (diameter <65 nm). We provide detailed analyses of the vertical distribution of the aerosol particle size distributions and the PMR and compare these with previous tropical and extratropical measurements. The backscatter ratio (BR) was calculated based on the aerosol particle size distributions measured in situ. The resulting data set was compared with the vertical profiles of the BR detected by the multiwavelength aerosol scatterometer (MAS) and an airborne miniature aerosol lidar (MAL) aboard the M55 Geophysica and by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The data of all four methods largely agree with one another, showing enhanced BR values in the altitude range of the ATAL (between ∼15 and 18.5 km) with a maximum at 17.5 km altitude. By means of the AMA-centered equivalent latitude calculated from meteorological reanalysis data, it is shown that such enhanced values of the BR larger than 1.1 could only be observed within the confinement of the AMA.
000902389 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902389 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902389 7001_ $$00000-0003-1316-0292$$aWeigel, Ralf$$b1
000902389 7001_ $$0P:(DE-HGF)0$$aCairo, Francesco$$b2
000902389 7001_ $$0P:(DE-HGF)0$$aVernier, Jean-Paul$$b3
000902389 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b4
000902389 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b5
000902389 7001_ $$0P:(DE-HGF)0$$aMitev, Valentin$$b6
000902389 7001_ $$00000-0002-5747-0391$$aMatthey, Renaud$$b7
000902389 7001_ $$00000-0003-2260-094X$$aViciani, Silvia$$b8
000902389 7001_ $$00000-0003-1349-6650$$aD'Amato, Francesco$$b9
000902389 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b10$$ufzj
000902389 7001_ $$0P:(DE-HGF)0$$aDeshler, Terry$$b11
000902389 7001_ $$00000-0002-4774-9380$$aBorrmann, Stephan$$b12
000902389 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-15259-2021$$gVol. 21, no. 19, p. 15259 - 15282$$n19$$p15259 - 15282$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000902389 8564_ $$uhttps://juser.fz-juelich.de/record/902389/files/acp-21-15259-2021.pdf$$yOpenAccess
000902389 909CO $$ooai:juser.fz-juelich.de:902389$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184748$$aForschungszentrum Jülich$$b0$$kFZJ
000902389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b4$$kFZJ
000902389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b5$$kFZJ
000902389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b10$$kFZJ
000902389 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902389 9141_ $$y2021
000902389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902389 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902389 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902389 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902389 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902389 9801_ $$aFullTexts
000902389 980__ $$ajournal
000902389 980__ $$aVDB
000902389 980__ $$aUNRESTRICTED
000902389 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902389 981__ $$aI:(DE-Juel1)ICE-3-20101013