000902390 001__ 902390
000902390 005__ 20240712101027.0
000902390 0247_ $$2doi$$a10.5194/acp-21-7373-2021
000902390 0247_ $$2ISSN$$a1680-7316
000902390 0247_ $$2ISSN$$a1680-7324
000902390 0247_ $$2Handle$$a2128/29026
000902390 0247_ $$2altmetric$$aaltmetric:105984799
000902390 0247_ $$2WOS$$aWOS:000653523100002
000902390 037__ $$aFZJ-2021-04224
000902390 082__ $$a550
000902390 1001_ $$0P:(DE-HGF)0$$aBarré, Jérôme$$b0$$eCorresponding author
000902390 245__ $$aEstimating lockdown-induced European NO<sub>2</sub> changes using satellite and surface observations and air quality models
000902390 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000902390 3367_ $$2DRIVER$$aarticle
000902390 3367_ $$2DataCite$$aOutput Types/Journal article
000902390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636730108_21148
000902390 3367_ $$2BibTeX$$aARTICLE
000902390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902390 3367_ $$00$$2EndNote$$aJournal Article
000902390 520__ $$aThis study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we provide weather-normalized estimates based on a machine learning method (gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalized satellite-estimated NO2 column changes with weather-normalized surface NO2 concentration changes and the CAMS regional ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions, and, conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average reduction estimates based on either satellite observations (−23 %), surface stations (−43 %), or models (−32 %) are presented, showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled to the TROPOMI overpasses (−37 %), pointing out the importance of the variability in time of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based estimates.
000902390 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902390 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902390 7001_ $$00000-0001-5746-6504$$aPetetin, Hervé$$b1
000902390 7001_ $$00000-0002-0162-0098$$aColette, Augustin$$b2
000902390 7001_ $$00000-0001-9727-8583$$aGuevara, Marc$$b3
000902390 7001_ $$00000-0003-1396-0505$$aPeuch, Vincent-Henri$$b4
000902390 7001_ $$0P:(DE-HGF)0$$aRouil, Laurence$$b5
000902390 7001_ $$00000-0003-1577-5143$$aEngelen, Richard$$b6
000902390 7001_ $$00000-0003-0603-5389$$aInness, Antje$$b7
000902390 7001_ $$00000-0003-4880-5329$$aFlemming, Johannes$$b8
000902390 7001_ $$00000-0002-4456-0697$$aPérez García-Pando, Carlos$$b9
000902390 7001_ $$0P:(DE-HGF)0$$aBowdalo, Dene$$b10
000902390 7001_ $$0P:(DE-HGF)0$$aMeleux, Frederik$$b11
000902390 7001_ $$00000-0003-2549-1750$$aGeels, Camilla$$b12
000902390 7001_ $$00000-0002-6741-5839$$aChristensen, Jesper H.$$b13
000902390 7001_ $$0P:(DE-HGF)0$$aGauss, Michael$$b14
000902390 7001_ $$0P:(DE-HGF)0$$aBenedictow, Anna$$b15
000902390 7001_ $$0P:(DE-HGF)0$$aTsyro, Svetlana$$b16
000902390 7001_ $$0P:(DE-Juel1)176996$$aFriese, Elmar$$b17$$ufzj
000902390 7001_ $$0P:(DE-HGF)0$$aStruzewska, Joanna$$b18
000902390 7001_ $$0P:(DE-HGF)0$$aKaminski, Jacek W.$$b19
000902390 7001_ $$0P:(DE-HGF)0$$aDouros, John$$b20
000902390 7001_ $$0P:(DE-HGF)0$$aTimmermans, Renske$$b21
000902390 7001_ $$0P:(DE-HGF)0$$aRobertson, Lennart$$b22
000902390 7001_ $$0P:(DE-HGF)0$$aAdani, Mario$$b23
000902390 7001_ $$00000-0001-5872-0244$$aJorba, Oriol$$b24
000902390 7001_ $$0P:(DE-HGF)0$$aJoly, Mathieu$$b25
000902390 7001_ $$00000-0001-5140-0037$$aKouznetsov, Rostislav$$b26
000902390 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-7373-2021$$gVol. 21, no. 9, p. 7373 - 7394$$n9$$p7373 - 7394$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000902390 8564_ $$uhttps://juser.fz-juelich.de/record/902390/files/acp-21-7373-2021.pdf$$yOpenAccess
000902390 909CO $$ooai:juser.fz-juelich.de:902390$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176996$$aForschungszentrum Jülich$$b17$$kFZJ
000902390 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902390 9141_ $$y2021
000902390 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902390 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902390 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902390 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902390 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902390 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902390 9801_ $$aFullTexts
000902390 980__ $$ajournal
000902390 980__ $$aVDB
000902390 980__ $$aUNRESTRICTED
000902390 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902390 981__ $$aI:(DE-Juel1)ICE-3-20101013