001     902390
005     20240712101027.0
024 7 _ |a 10.5194/acp-21-7373-2021
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/29026
|2 Handle
024 7 _ |a altmetric:105984799
|2 altmetric
024 7 _ |a WOS:000653523100002
|2 WOS
037 _ _ |a FZJ-2021-04224
082 _ _ |a 550
100 1 _ |a Barré, Jérôme
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models
260 _ _ |a Katlenburg-Lindau
|c 2021
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636730108_21148
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we provide weather-normalized estimates based on a machine learning method (gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalized satellite-estimated NO2 column changes with weather-normalized surface NO2 concentration changes and the CAMS regional ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions, and, conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average reduction estimates based on either satellite observations (−23 %), surface stations (−43 %), or models (−32 %) are presented, showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled to the TROPOMI overpasses (−37 %), pointing out the importance of the variability in time of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based estimates.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Petetin, Hervé
|0 0000-0001-5746-6504
|b 1
700 1 _ |a Colette, Augustin
|0 0000-0002-0162-0098
|b 2
700 1 _ |a Guevara, Marc
|0 0000-0001-9727-8583
|b 3
700 1 _ |a Peuch, Vincent-Henri
|0 0000-0003-1396-0505
|b 4
700 1 _ |a Rouil, Laurence
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Engelen, Richard
|0 0000-0003-1577-5143
|b 6
700 1 _ |a Inness, Antje
|0 0000-0003-0603-5389
|b 7
700 1 _ |a Flemming, Johannes
|0 0000-0003-4880-5329
|b 8
700 1 _ |a Pérez García-Pando, Carlos
|0 0000-0002-4456-0697
|b 9
700 1 _ |a Bowdalo, Dene
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Meleux, Frederik
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Geels, Camilla
|0 0000-0003-2549-1750
|b 12
700 1 _ |a Christensen, Jesper H.
|0 0000-0002-6741-5839
|b 13
700 1 _ |a Gauss, Michael
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Benedictow, Anna
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Tsyro, Svetlana
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Friese, Elmar
|0 P:(DE-Juel1)176996
|b 17
|u fzj
700 1 _ |a Struzewska, Joanna
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Kaminski, Jacek W.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Douros, John
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Timmermans, Renske
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Robertson, Lennart
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Adani, Mario
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Jorba, Oriol
|0 0000-0001-5872-0244
|b 24
700 1 _ |a Joly, Mathieu
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Kouznetsov, Rostislav
|0 0000-0001-5140-0037
|b 26
773 _ _ |a 10.5194/acp-21-7373-2021
|g Vol. 21, no. 9, p. 7373 - 7394
|0 PERI:(DE-600)2069847-1
|n 9
|p 7373 - 7394
|t Atmospheric chemistry and physics
|v 21
|y 2021
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/902390/files/acp-21-7373-2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902390
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)176996
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21