000902391 001__ 902391
000902391 005__ 20240709081631.0
000902391 0247_ $$2doi$$a10.1016/j.apr.2020.12.006
000902391 0247_ $$2Handle$$a2128/29356
000902391 0247_ $$2altmetric$$aaltmetric:99316804
000902391 0247_ $$2WOS$$aWOS:000616932200001
000902391 037__ $$aFZJ-2021-04225
000902391 1001_ $$0P:(DE-Juel1)177080$$aDe Souza Fernandes Duarte, Ediclê$$b0
000902391 245__ $$aEvaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution
000902391 260__ $$aBlackburn, Vic.$$bTUNCAP$$c2021
000902391 3367_ $$2DRIVER$$aarticle
000902391 3367_ $$2DataCite$$aOutput Types/Journal article
000902391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638856263_10164
000902391 3367_ $$2BibTeX$$aARTICLE
000902391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902391 3367_ $$00$$2EndNote$$aJournal Article
000902391 520__ $$aWe present a high-resolution air quality study over São Paulo, Brazil with the EURopean Air Pollution Dispersion - Inverse Model (EURAD-IM) used for the first time over South America simulating detailed features of aerosols. Modeled data are evaluated with observational surface data and a Lidar. Two case studies in 2016 with distinct meteorological conditions and pollution plume features show transport (i) from central South America, associated to biomass burning activities, (ii) from the rural part of the state of São Paulo, (iii) between the metropolitan areas of Rio de Janeiro and São Paulo (MASP) either through the Paraíba Valley or via the ocean, connecting Brazil's two largest cities, (iv) from the port-city Santos to MASP and also from MASP to the city Campinas, and vice versa. A Pearson coefficient of 0.7 was found for PM10 at MASP CENTER and EURAD-IM simulations vary within the observational standard deviation, with a Mean Percentual Error (MPE) of 10%. The model's vertical distributions of aerosol layers agree with the Lidar profiles that show either characteristics of long-range transported biomass burning plumes, or of local pollution. The distinct transport patterns that agree with satellite Aerosol Optical Death and fire spot images as well as with the ground-based observations within the standard deviations, allows us exploring patterns of air pollution in a detailed manner and to understand the complex interactions between local to long-range transport sources.
000902391 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902391 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902391 7001_ $$0P:(DE-Juel1)162342$$aFranke, Philipp$$b1
000902391 7001_ $$0P:(DE-Juel1)162344$$aLange, Anne Caroline$$b2
000902391 7001_ $$0P:(DE-Juel1)176996$$aFriese, Elmar$$b3
000902391 7001_ $$0P:(DE-HGF)0$$aJuliano da Silva Lopes, Fábio$$b4
000902391 7001_ $$0P:(DE-HGF)0$$aJoão da Silva, Jonatan$$b5
000902391 7001_ $$00000-0002-1674-7518$$aSouza dos Reis, Jean$$b6
000902391 7001_ $$00000-0002-9691-5306$$aLandulfo, Eduardo$$b7
000902391 7001_ $$0P:(DE-HGF)0$$aSantos e Silva, Cláudio Moises$$b8
000902391 7001_ $$0P:(DE-Juel1)129194$$aElbern, Hendrik$$b9
000902391 7001_ $$00000-0002-4865-5351$$aHoelzemann, Judith Johanna$$b10$$eCorresponding author
000902391 773__ $$0PERI:(DE-600)2645757-X$$a10.1016/j.apr.2020.12.006$$gVol. 12, no. 2, p. 451 - 469$$n2$$p451 - 469$$tAtmospheric pollution research$$v12$$x1309-1042$$y2021
000902391 8564_ $$uhttps://juser.fz-juelich.de/record/902391/files/Duarte_et_al_2021_APR-D-20-00753_R2.pdf$$yPublished on 2020-12-23. Available in OpenAccess from 2022-12-23.
000902391 909CO $$ooai:juser.fz-juelich.de:902391$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162342$$aForschungszentrum Jülich$$b1$$kFZJ
000902391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162344$$aForschungszentrum Jülich$$b2$$kFZJ
000902391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176996$$aForschungszentrum Jülich$$b3$$kFZJ
000902391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b9$$kFZJ
000902391 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902391 9141_ $$y2021
000902391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000902391 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902391 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS POLLUT RES : 2019$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000902391 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902391 9801_ $$aFullTexts
000902391 980__ $$ajournal
000902391 980__ $$aVDB
000902391 980__ $$aUNRESTRICTED
000902391 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902391 981__ $$aI:(DE-Juel1)ICE-3-20101013