001     902391
005     20240709081631.0
024 7 _ |a 10.1016/j.apr.2020.12.006
|2 doi
024 7 _ |a 2128/29356
|2 Handle
024 7 _ |a altmetric:99316804
|2 altmetric
024 7 _ |a WOS:000616932200001
|2 WOS
037 _ _ |a FZJ-2021-04225
100 1 _ |a De Souza Fernandes Duarte, Ediclê
|0 P:(DE-Juel1)177080
|b 0
245 _ _ |a Evaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution
260 _ _ |a Blackburn, Vic.
|c 2021
|b TUNCAP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638856263_10164
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a high-resolution air quality study over São Paulo, Brazil with the EURopean Air Pollution Dispersion - Inverse Model (EURAD-IM) used for the first time over South America simulating detailed features of aerosols. Modeled data are evaluated with observational surface data and a Lidar. Two case studies in 2016 with distinct meteorological conditions and pollution plume features show transport (i) from central South America, associated to biomass burning activities, (ii) from the rural part of the state of São Paulo, (iii) between the metropolitan areas of Rio de Janeiro and São Paulo (MASP) either through the Paraíba Valley or via the ocean, connecting Brazil's two largest cities, (iv) from the port-city Santos to MASP and also from MASP to the city Campinas, and vice versa. A Pearson coefficient of 0.7 was found for PM10 at MASP CENTER and EURAD-IM simulations vary within the observational standard deviation, with a Mean Percentual Error (MPE) of 10%. The model's vertical distributions of aerosol layers agree with the Lidar profiles that show either characteristics of long-range transported biomass burning plumes, or of local pollution. The distinct transport patterns that agree with satellite Aerosol Optical Death and fire spot images as well as with the ground-based observations within the standard deviations, allows us exploring patterns of air pollution in a detailed manner and to understand the complex interactions between local to long-range transport sources.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Franke, Philipp
|0 P:(DE-Juel1)162342
|b 1
700 1 _ |a Lange, Anne Caroline
|0 P:(DE-Juel1)162344
|b 2
700 1 _ |a Friese, Elmar
|0 P:(DE-Juel1)176996
|b 3
700 1 _ |a Juliano da Silva Lopes, Fábio
|0 P:(DE-HGF)0
|b 4
700 1 _ |a João da Silva, Jonatan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Souza dos Reis, Jean
|0 0000-0002-1674-7518
|b 6
700 1 _ |a Landulfo, Eduardo
|0 0000-0002-9691-5306
|b 7
700 1 _ |a Santos e Silva, Cláudio Moises
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Elbern, Hendrik
|0 P:(DE-Juel1)129194
|b 9
700 1 _ |a Hoelzemann, Judith Johanna
|0 0000-0002-4865-5351
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.apr.2020.12.006
|g Vol. 12, no. 2, p. 451 - 469
|0 PERI:(DE-600)2645757-X
|n 2
|p 451 - 469
|t Atmospheric pollution research
|v 12
|y 2021
|x 1309-1042
856 4 _ |u https://juser.fz-juelich.de/record/902391/files/Duarte_et_al_2021_APR-D-20-00753_R2.pdf
|y Published on 2020-12-23. Available in OpenAccess from 2022-12-23.
909 C O |o oai:juser.fz-juelich.de:902391
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176996
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129194
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS POLLUT RES : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21