000902392 001__ 902392
000902392 005__ 20240712101027.0
000902392 0247_ $$2doi$$a10.5194/amt-14-5241-2021
000902392 0247_ $$2ISSN$$a1867-1381
000902392 0247_ $$2ISSN$$a1867-8548
000902392 0247_ $$2Handle$$a2128/29025
000902392 0247_ $$2altmetric$$aaltmetric:110684000
000902392 0247_ $$2WOS$$aWOS:000680219400004
000902392 037__ $$aFZJ-2021-04226
000902392 082__ $$a550
000902392 1001_ $$00000-0002-8405-3470$$aKumar, Vinod$$b0$$eCorresponding author
000902392 245__ $$aEvaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO<sub>2</sub> measurements
000902392 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000902392 3367_ $$2DRIVER$$aarticle
000902392 3367_ $$2DataCite$$aOutput Types/Journal article
000902392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636729988_21147
000902392 3367_ $$2BibTeX$$aARTICLE
000902392 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902392 3367_ $$00$$2EndNote$$aJournal Article
000902392 520__ $$aWe present high spatial resolution (up to 2.2×2.2 km2) simulations focussed over south-west Germany using the online coupled regional atmospheric chemistry model system MECO(n) (MESSy-fied ECHAM and COSMO models nested n times). Numerical simulation of nitrogen dioxide (NO2) surface volume mixing ratios (VMRs) are compared to in situ measurements from a network with 193 locations including background, traffic-adjacent and industrial stations to investigate the model's performance in simulating the spatial and temporal variability of short-lived chemical species. We show that the use of a high-resolution and up-to-date emission inventory is crucial for reproducing the spatial variability and resulted in good agreement with the measured VMRs at the background and industrial locations with an overall bias of less than 10 %. We introduce a computationally efficient approach that simulates diurnal and daily variability in monthly-resolved anthropogenic emissions to resolve the temporal variability of NO2.MAX-DOAS (Multiple AXis Differential Optical Absorption Spectroscopy) measurements performed at Mainz (49.99∘ N, 8.23∘ E) were used to evaluate the simulated tropospheric vertical column densities (VCDs) of NO2. We propose a consistent and robust approach to evaluate the vertical distribution of NO2 in the boundary layer by comparing the individual differential slant column densities (dSCDs) at various elevation angles. This approach considers details of the spatial heterogeneity and sensitivity volume of the MAX-DOAS measurements while comparing the measured and simulated dSCDs. The effects of clouds on the agreement between MAX-DOAS measurements and simulations have also been investigated. For low elevation angles (≤8∘), small biases in the range of −14 % to +7 % and Pearson correlation coefficients in the range of 0.5 to 0.8 were achieved for different azimuth directions in the cloud-free cases, indicating good model performance in the layers close to the surface. Accounting for diurnal and daily variability in the monthly-resolved anthropogenic emissions was found to be crucial for the accurate representation of time series of measured NO2 VMR and dSCDs and is particularly critical when vertical mixing is suppressed, and the atmospheric lifetime of NO2 is relatively long.
000902392 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902392 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902392 7001_ $$0P:(DE-HGF)0$$aRemmers, Julia$$b1
000902392 7001_ $$00000-0002-7196-0901$$aBeirle, Steffen$$b2
000902392 7001_ $$00000-0002-3099-0266$$aFallmann, Joachim$$b3
000902392 7001_ $$0P:(DE-Juel1)180121$$aKerkweg, Astrid$$b4
000902392 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b5
000902392 7001_ $$00000-0003-3549-6889$$aMertens, Mariano$$b6
000902392 7001_ $$00000-0003-2440-6104$$aPozzer, Andrea$$b7
000902392 7001_ $$0P:(DE-HGF)0$$aSteil, Benedikt$$b8
000902392 7001_ $$0P:(DE-HGF)0$$aBarra, Marc$$b9
000902392 7001_ $$00000-0002-3105-4306$$aTost, Holger$$b10
000902392 7001_ $$0P:(DE-HGF)0$$aWagner, Thomas$$b11
000902392 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-5241-2021$$gVol. 14, no. 7, p. 5241 - 5269$$n7$$p5241 - 5269$$tAtmospheric measurement techniques$$v14$$x1867-8548$$y2021
000902392 8564_ $$uhttps://juser.fz-juelich.de/record/902392/files/amt-14-5241-2021.pdf$$yOpenAccess
000902392 909CO $$ooai:juser.fz-juelich.de:902392$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180121$$aForschungszentrum Jülich$$b4$$kFZJ
000902392 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902392 9141_ $$y2021
000902392 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000902392 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902392 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902392 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000902392 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000902392 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000902392 9801_ $$aFullTexts
000902392 980__ $$ajournal
000902392 980__ $$aVDB
000902392 980__ $$aUNRESTRICTED
000902392 980__ $$aI:(DE-Juel1)IEK-8-20101013
000902392 981__ $$aI:(DE-Juel1)ICE-3-20101013