000902415 001__ 902415
000902415 005__ 20220930130331.0
000902415 020__ $$a978-3-030-90538-5 (print)
000902415 020__ $$a978-3-030-90539-2 (electronic)
000902415 0247_ $$2doi$$a10.1007/978-3-030-90539-2_1
000902415 0247_ $$2ISSN$$a0302-9743
000902415 0247_ $$2ISSN$$a1611-3349
000902415 0247_ $$2altmetric$$aaltmetric:116921604
000902415 0247_ $$2WOS$$aWOS:000763168300001
000902415 0247_ $$2Handle$$a2128/31342
000902415 037__ $$aFZJ-2021-04237
000902415 041__ $$aEnglish
000902415 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$eCorresponding author
000902415 1112_ $$aISC High Performance 2021$$cFrankfurt$$d2021-06-24 - 2021-07-02$$gISC2021$$wGermany
000902415 245__ $$aMachine-Learning-Based Control of Perturbed and Heated Channel Flows
000902415 260__ $$bSpringer$$c2021
000902415 29510 $$aHigh Performance Computing / Jagode, Heike (Editor)
000902415 300__ $$a7 - 22
000902415 3367_ $$2ORCID$$aCONFERENCE_PAPER
000902415 3367_ $$033$$2EndNote$$aConference Paper
000902415 3367_ $$2BibTeX$$aINPROCEEDINGS
000902415 3367_ $$2DRIVER$$aconferenceObject
000902415 3367_ $$2DataCite$$aOutput Types/Conference Paper
000902415 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1643372970_23053
000902415 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000902415 4900_ $$aLecture Notes in Computer Science$$v12761
000902415 520__ $$aA reinforcement learning algorithm is coupled to a thermal lattice-Boltzmann method to control flow through a two-dimensional heated channel narrowed by a bump. The algorithm is allowed to change the disturbance factor of the bump and receives feedback in terms of the pressure loss and temperature increase between the inflow and outflow region of the channel. It is trained to modify the bump such that both fluid mechanical properties are rated equally important. After a modification, a new simulation is initialized using the modified geometry and the flow field computed in the previous run. The thermal lattice-Boltzmann method is validated for a fully developed isothermal channel flow. After 265 simulations, the trained algorithm predicts an averaged disturbance factor that deviates by less than 1% from the reference solution obtained from 3,400 numerical simulations using a parameter sweep over the disturbance factor. The error is reduced to less than 0.1% after 1,450 simulations. A comparison of the temperature, pres- sure, and streamwise velocity distributions of the reference solution with the solution after 1,450 simulations along the line of the maximum velocity component in streamwise direction shows only negligible differences. The presented method is hence a valid method for avoiding expensive parameter space explorations and promises to be effective in supporting shape optimizations for more complex configurations, e.g., in finding optimal nasal cavity shapes.
000902415 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902415 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
000902415 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
000902415 7001_ $$00000-0001-7895-761X$$aWaldmann, Moritz$$b1
000902415 7001_ $$00000-0002-3472-1813$$aSchröder, Wolfgang$$b2
000902415 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b3
000902415 773__ $$a10.1007/978-3-030-90539-2_1
000902415 8564_ $$uhttps://juser.fz-juelich.de/record/902415/files/Invoice_2936170321.pdf
000902415 8564_ $$uhttps://juser.fz-juelich.de/record/902415/files/High%20Performance%20Computing%2C%20Proceedings%20of%20the%2036th%20International%20Conference%2C%20ISC%20High%20Performance%202021%20-%202021%20-%20Machine-Learning-Based.pdf$$yOpenAccess
000902415 8767_ $$82936170321$$92022-01-24$$d2022-02-11$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200177329
000902415 909CO $$ooai:juser.fz-juelich.de:902415$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000902415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ
000902415 9101_ $$0I:(DE-588b)36225-6$$60000-0001-7895-761X$$aRWTH Aachen$$b1$$kRWTH
000902415 9101_ $$0I:(DE-588b)36225-6$$60000-0002-3472-1813$$aRWTH Aachen$$b2$$kRWTH
000902415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b3$$kFZJ
000902415 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902415 9141_ $$y2021
000902415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000902415 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902415 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger
000902415 920__ $$lyes
000902415 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000902415 980__ $$acontrib
000902415 980__ $$aVDB
000902415 980__ $$aUNRESTRICTED
000902415 980__ $$acontb
000902415 980__ $$aI:(DE-Juel1)JSC-20090406
000902415 980__ $$aAPC
000902415 9801_ $$aAPC
000902415 9801_ $$aFullTexts