001     902415
005     20220930130331.0
020 _ _ |a 978-3-030-90538-5 (print)
020 _ _ |a 978-3-030-90539-2 (electronic)
024 7 _ |a 10.1007/978-3-030-90539-2_1
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a altmetric:116921604
|2 altmetric
024 7 _ |a WOS:000763168300001
|2 WOS
024 7 _ |a 2128/31342
|2 Handle
037 _ _ |a FZJ-2021-04237
041 _ _ |a English
100 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 0
|e Corresponding author
111 2 _ |a ISC High Performance 2021
|g ISC2021
|c Frankfurt
|d 2021-06-24 - 2021-07-02
|w Germany
245 _ _ |a Machine-Learning-Based Control of Perturbed and Heated Channel Flows
260 _ _ |c 2021
|b Springer
295 1 0 |a High Performance Computing / Jagode, Heike (Editor)
300 _ _ |a 7 - 22
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1643372970_23053
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 12761
520 _ _ |a A reinforcement learning algorithm is coupled to a thermal lattice-Boltzmann method to control flow through a two-dimensional heated channel narrowed by a bump. The algorithm is allowed to change the disturbance factor of the bump and receives feedback in terms of the pressure loss and temperature increase between the inflow and outflow region of the channel. It is trained to modify the bump such that both fluid mechanical properties are rated equally important. After a modification, a new simulation is initialized using the modified geometry and the flow field computed in the previous run. The thermal lattice-Boltzmann method is validated for a fully developed isothermal channel flow. After 265 simulations, the trained algorithm predicts an averaged disturbance factor that deviates by less than 1% from the reference solution obtained from 3,400 numerical simulations using a parameter sweep over the disturbance factor. The error is reduced to less than 0.1% after 1,450 simulations. A comparison of the temperature, pres- sure, and streamwise velocity distributions of the reference solution with the solution after 1,450 simulations along the line of the maximum velocity component in streamwise direction shows only negligible differences. The presented method is hence a valid method for avoiding expensive parameter space explorations and promises to be effective in supporting shape optimizations for more complex configurations, e.g., in finding optimal nasal cavity shapes.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
700 1 _ |a Waldmann, Moritz
|0 0000-0001-7895-761X
|b 1
700 1 _ |a Schröder, Wolfgang
|0 0000-0002-3472-1813
|b 2
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 3
773 _ _ |a 10.1007/978-3-030-90539-2_1
856 4 _ |u https://juser.fz-juelich.de/record/902415/files/Invoice_2936170321.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902415/files/High%20Performance%20Computing%2C%20Proceedings%20of%20the%2036th%20International%20Conference%2C%20ISC%20High%20Performance%202021%20-%202021%20-%20Machine-Learning-Based.pdf
909 C O |o oai:juser.fz-juelich.de:902415
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177985
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 0000-0001-7895-761X
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 0000-0002-3472-1813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-25
|w ger
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21