000902421 001__ 902421
000902421 005__ 20230113085401.0
000902421 0247_ $$2doi$$a10.1515/hsz-2020-0207
000902421 0247_ $$2ISSN$$a1431-6730
000902421 0247_ $$2ISSN$$a1437-4315
000902421 0247_ $$2Handle$$a2128/33224
000902421 0247_ $$2WOS$$aWOS:000596049300010
000902421 037__ $$aFZJ-2021-04243
000902421 082__ $$a570
000902421 1001_ $$0P:(DE-HGF)0$$aRosenbach, Hannah$$b0
000902421 245__ $$aInfluence of monovalent metal ions on metal binding and catalytic activity of the 10–23 DNAzyme
000902421 260__ $$aBerlin [u.a.]$$bde Gruyter$$c2020
000902421 3367_ $$2DRIVER$$aarticle
000902421 3367_ $$2DataCite$$aOutput Types/Journal article
000902421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671615846_4311
000902421 3367_ $$2BibTeX$$aARTICLE
000902421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902421 3367_ $$00$$2EndNote$$aJournal Article
000902421 520__ $$aDeoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10–23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10–23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10–23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.
000902421 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000902421 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902421 7001_ $$0P:(DE-Juel1)168267$$aBorggräfe, Jan$$b1
000902421 7001_ $$0P:(DE-HGF)0$$aVictor, Julian$$b2
000902421 7001_ $$0P:(DE-HGF)0$$aWuebben, Christine$$b3
000902421 7001_ $$0P:(DE-HGF)0$$aSchiemann, Olav$$b4
000902421 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b5
000902421 7001_ $$0P:(DE-HGF)0$$aSteger, Gerhard$$b6
000902421 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b7$$ufzj
000902421 7001_ $$00000-0002-2892-4825$$aSpan, Ingrid$$b8$$eCorresponding author
000902421 773__ $$0PERI:(DE-600)1466062-3$$a10.1515/hsz-2020-0207$$gVol. 402, no. 1, p. 99 - 111$$n1$$p99 - 111$$tBiological chemistry$$v402$$x1431-6730$$y2020
000902421 8564_ $$uhttps://juser.fz-juelich.de/record/902421/files/Rosenbach%202021%20Biol%20Chem%20Monovalent%20metal%20ions%20on%20DNAzyme%20catalytic%20activity.pdf$$yRestricted
000902421 8564_ $$uhttps://juser.fz-juelich.de/record/902421/files/Rosenbach_et_al_revised.pdf$$yOpenAccess
000902421 909CO $$ooai:juser.fz-juelich.de:902421$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168267$$aForschungszentrum Jülich$$b1$$kFZJ
000902421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b5$$kFZJ
000902421 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000902421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b7$$kFZJ
000902421 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-2892-4825$$aForschungszentrum Jülich$$b8$$kFZJ
000902421 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000902421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL CHEM : 2019$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902421 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000902421 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000902421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000902421 920__ $$lyes
000902421 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000902421 980__ $$ajournal
000902421 980__ $$aVDB
000902421 980__ $$aUNRESTRICTED
000902421 980__ $$aI:(DE-Juel1)IBI-7-20200312
000902421 9801_ $$aFullTexts