001     902421
005     20230113085401.0
024 7 _ |a 10.1515/hsz-2020-0207
|2 doi
024 7 _ |a 1431-6730
|2 ISSN
024 7 _ |a 1437-4315
|2 ISSN
024 7 _ |a 2128/33224
|2 Handle
024 7 _ |a WOS:000596049300010
|2 WOS
037 _ _ |a FZJ-2021-04243
082 _ _ |a 570
100 1 _ |a Rosenbach, Hannah
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of monovalent metal ions on metal binding and catalytic activity of the 10–23 DNAzyme
260 _ _ |a Berlin [u.a.]
|c 2020
|b de Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671615846_4311
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10–23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10–23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10–23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Borggräfe, Jan
|0 P:(DE-Juel1)168267
|b 1
700 1 _ |a Victor, Julian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wuebben, Christine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schiemann, Olav
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hoyer, Wolfgang
|0 P:(DE-Juel1)166306
|b 5
700 1 _ |a Steger, Gerhard
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Etzkorn, Manuel
|0 P:(DE-Juel1)156341
|b 7
|u fzj
700 1 _ |a Span, Ingrid
|0 0000-0002-2892-4825
|b 8
|e Corresponding author
773 _ _ |a 10.1515/hsz-2020-0207
|g Vol. 402, no. 1, p. 99 - 111
|0 PERI:(DE-600)1466062-3
|n 1
|p 99 - 111
|t Biological chemistry
|v 402
|y 2020
|x 1431-6730
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902421/files/Rosenbach%202021%20Biol%20Chem%20Monovalent%20metal%20ions%20on%20DNAzyme%20catalytic%20activity.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902421/files/Rosenbach_et_al_revised.pdf
909 C O |o oai:juser.fz-juelich.de:902421
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168267
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166306
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156341
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 0000-0002-2892-4825
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL CHEM : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21