000902425 001__ 902425
000902425 005__ 20230224084259.0
000902425 0247_ $$2doi$$a10.1016/j.bpc.2021.106700
000902425 0247_ $$2ISSN$$a0301-4622
000902425 0247_ $$2ISSN$$a1873-4200
000902425 0247_ $$2Handle$$a2128/33549
000902425 0247_ $$2pmid$$a34784548
000902425 0247_ $$2WOS$$aWOS:000722063800001
000902425 037__ $$aFZJ-2021-04247
000902425 082__ $$a540
000902425 1001_ $$0P:(DE-Juel1)176262$$aFatafta, Hebah$$b0
000902425 245__ $$aDisorder-to-order transition of the amyloid-β peptide upon lipid binding
000902425 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000902425 3367_ $$2DRIVER$$aarticle
000902425 3367_ $$2DataCite$$aOutput Types/Journal article
000902425 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676538981_5936
000902425 3367_ $$2BibTeX$$aARTICLE
000902425 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902425 3367_ $$00$$2EndNote$$aJournal Article
000902425 520__ $$aThere is mounting evidence that Alzheimer's disease progression and severity are linked to neuronal membrane damage caused by aggregates of the amyloid- (A) peptide. However, the detailed mechanism behind the membrane damage is not well understood yet. Recently, the lipid-chaperone hypothesis has been put forward, based on which the formation of complexes between A and free lipids enables an easy insertion of A into membranes. In order to test this hypothesis, we performed numerous all-atom molecular dynamics simulations. We studied the complex formation between individual lipids, considering both POPC and DPPC, and A and examined whether the resulting complexes would be able to insert into lipid membranes. Complex formation at a one-to-one ratio was readily observed, yet with minimal effects on A's characteristics. Most importantly, the peptide remains largely disordered in 1:1 complexes, and the complex does not insert into the membrane; instead, it is adsorbed to the membrane surface. The results change considerably once A forms a complex with a POPC cluster composed of three lipid molecules. The hydrophobic interactions between A and the lipid tails cause the peptide to fold into either a helical or a -sheet structure. These observations provide atomic insight into the disorder-to-order transition that is needed for membrane insertion or amyloid aggregation to proceed.
000902425 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000902425 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902425 7001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b1
000902425 7001_ $$00000-0002-7576-0499$$aBundschuh, Bastian F.$$b2
000902425 7001_ $$0P:(DE-Juel1)174397$$aLoschwitz, Jennifer$$b3
000902425 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$eCorresponding author
000902425 773__ $$0PERI:(DE-600)1496385-1$$a10.1016/j.bpc.2021.106700$$gVol. 280, p. 106700 -$$p106700 -$$tBiophysical chemistry$$v280$$x0301-4622$$y2022
000902425 8564_ $$uhttps://juser.fz-juelich.de/record/902425/files/Fatafta-BiophysChem-2022_Disorder-to-order%20transition%20of%20the%20amyloid-%C3%9F%20peptide%20upon%20lipid%20binding-1.pdf$$yRestricted
000902425 8564_ $$uhttps://juser.fz-juelich.de/record/902425/files/paper.pdf$$yOpenAccess
000902425 909CO $$ooai:juser.fz-juelich.de:902425$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176262$$aForschungszentrum Jülich$$b0$$kFZJ
000902425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178946$$aForschungszentrum Jülich$$b1$$kFZJ
000902425 9101_ $$0I:(DE-HGF)0$$60000-0002-7576-0499$$aExternal Institute$$b2$$kExtern
000902425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174397$$aForschungszentrum Jülich$$b3$$kFZJ
000902425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
000902425 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000902425 9141_ $$y2022
000902425 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000902425 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000902425 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902425 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000902425 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-19$$wger
000902425 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOPHYS CHEM : 2021$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-19
000902425 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-19
000902425 920__ $$lyes
000902425 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000902425 980__ $$ajournal
000902425 980__ $$aVDB
000902425 980__ $$aI:(DE-Juel1)IBI-7-20200312
000902425 980__ $$aUNRESTRICTED
000902425 9801_ $$aFullTexts