000902427 001__ 902427
000902427 005__ 20230123101836.0
000902427 0247_ $$2doi$$a10.1021/acs.jpcb.1c00868
000902427 0247_ $$2ISSN$$a1089-5647
000902427 0247_ $$2ISSN$$a1520-5207
000902427 0247_ $$2ISSN$$a1520-6106
000902427 0247_ $$2pmid$$a34027669
000902427 0247_ $$2WOS$$aWOS:000661116600007
000902427 037__ $$aFZJ-2021-04249
000902427 082__ $$a530
000902427 1001_ $$0P:(DE-Juel1)176383$$aSamantray, Suman$$b0
000902427 245__ $$aThe Effects of Different Glycosaminoglycans on the Structure and Aggregation of the Amyloid-β (16–22) Peptide
000902427 260__ $$aWashington, DC$$bSoc.$$c2021
000902427 3367_ $$2DRIVER$$aarticle
000902427 3367_ $$2DataCite$$aOutput Types/Journal article
000902427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671710861_15336
000902427 3367_ $$2BibTeX$$aARTICLE
000902427 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902427 3367_ $$00$$2EndNote$$aJournal Article
000902427 500__ $$aKein Post-print vorhanden!
000902427 520__ $$aAggregates of the amyloid-β (Aβ) peptide are implicated as a causative substance in Alzheimer’s disease. Molecular dynamics simulations provide valuable contributions for elucidating the conformational transitions of monomeric and aggregated forms of Aβ be it in solution or in the presence of other molecules. Here, we study the effects of four different glycosaminoglycans (GAGs), three sulfated ones and a nonsulfated one, on the aggregation of Aβ16–22. From experiments, it has been suggested that GAGs, which belong to the main components of the brain’s extracellular space, favor amyloid fibril formation. Our simulation results reveal that the binding of Aβ16–22 to the GAGs is driven by electrostatic attraction between the negative GAG charges and the positively charged K16 of Aβ16–22. While these interactions have only minor effects on the GAG and Aβ16–22 conformations at the 1 Aβ16–22/1 GAG ratio, at the 2:2 stoichiometry the aggregation of Aβ16–22 is considerably changed. In solution, the aggregation of Aβ16–22 is strongly influenced by K16–E22 attraction, leading to antiparallel β-sheets. In the presence of GAGs, on the other hand, the interaction of K16 with the GAGs increases the importance of the hydrophobic interactions during Aβ16–22 aggregation, which in turn yields parallel alignments. A templating and ordering effect of the GAGs on the Aβ16–22 aggregates is observed. In summary, this study provides new insight at the atomic level on GAG–amyloid interactions, strengthening the view that sulfation of the GAGs plays a major role in this context.
000902427 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000902427 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902427 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$eCorresponding author
000902427 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.1c00868$$gVol. 125, no. 21, p. 5511 - 5525$$n21$$p5511 - 5525$$tThe journal of physical chemistry <Washington, DC> / B$$v125$$x1089-5647$$y2021
000902427 8564_ $$uhttps://juser.fz-juelich.de/record/902427/files/acs.jpcb.1c00868-2.pdf
000902427 909CO $$ooai:juser.fz-juelich.de:902427$$pVDB
000902427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176383$$aForschungszentrum Jülich$$b0$$kFZJ
000902427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b1$$kFZJ
000902427 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000902427 9141_ $$y2022
000902427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2019$$d2021-02-04
000902427 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000902427 920__ $$lyes
000902427 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000902427 980__ $$ajournal
000902427 980__ $$aVDB
000902427 980__ $$aI:(DE-Juel1)IBI-7-20200312
000902427 980__ $$aUNRESTRICTED