000902433 001__ 902433
000902433 005__ 20211119141839.0
000902433 020__ $$a9780841298125
000902433 0247_ $$2Handle$$a2128/29061
000902433 037__ $$aFZJ-2021-04255
000902433 1001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b0$$eCorresponding author$$ufzj
000902433 245__ $$aData Collection Strategies, Analysis, and Interpretation in AP-XAS
000902433 260__ $$aWashington, DC$$bACS Publications$$c2021
000902433 29510 $$aAmbient Pressure Spectroscopy in Complex Chemical Environments
000902433 300__ $$a315-331
000902433 3367_ $$2ORCID$$aBOOK_CHAPTER
000902433 3367_ $$07$$2EndNote$$aBook Section
000902433 3367_ $$2DRIVER$$abookPart
000902433 3367_ $$2BibTeX$$aINBOOK
000902433 3367_ $$2DataCite$$aOutput Types/Book chapter
000902433 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1637315092_4887
000902433 520__ $$aThis chapter will focus on strategies to collect meaningful X-ray absorption data in an ambient medium covering both the hard and soft X-ray regime and how to guide analysis, keeping experimental and physical differences of various strategies in mind. A special interest will be put on how the interaction of primary radiation and signal carriers with the surrounding medium will influence data acquisition and interpretation. Since hard and soft X-rays can be used to probe different electron shells in a material, both experiments can yield important and complementary information. Dipole selection rules lead to vastly different behavior of K- and L-edge XAS of transition metals, for example. In their ambient pressure variants, two major issues (that are fundamentally intertwined) arise when interpreting the data collected from both techniques: Whereas hard X-rays can penetrate condensed matter on a macroscopic scale making true transmission experiments possible, soft X-rays are confined to either electron or fluorescence yield detection modes, the latter suffering from low yields from lighter elements. Those not only pose different experimental challenges to avoid signal loss due to absorption in the reaction medium, but also probe depths of different orders of magnitude.
000902433 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000902433 8564_ $$uhttps://juser.fz-juelich.de/record/902433/files/bk-2021-00378m_Revision_DNM_Final.pdf$$yOpenAccess
000902433 909CO $$ooai:juser.fz-juelich.de:902433$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000902433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b0$$kFZJ
000902433 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000902433 9141_ $$y2021
000902433 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902433 920__ $$lyes
000902433 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000902433 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
000902433 980__ $$acontb
000902433 980__ $$aVDB
000902433 980__ $$aUNRESTRICTED
000902433 980__ $$aI:(DE-Juel1)PGI-6-20110106
000902433 980__ $$aI:(DE-Juel1)PGI-7-20110106
000902433 9801_ $$aFullTexts