000902441 001__ 902441
000902441 005__ 20240625095035.0
000902441 0247_ $$2doi$$a10.1103/PhysRevB.104.205113
000902441 0247_ $$2ISSN$$a1098-0121
000902441 0247_ $$2ISSN$$a2469-9977
000902441 0247_ $$2ISSN$$a0163-1829
000902441 0247_ $$2ISSN$$a0556-2805
000902441 0247_ $$2ISSN$$a1095-3795
000902441 0247_ $$2ISSN$$a1538-4489
000902441 0247_ $$2ISSN$$a1550-235X
000902441 0247_ $$2ISSN$$a2469-9950
000902441 0247_ $$2ISSN$$a2469-9969
000902441 0247_ $$2Handle$$a2128/29029
000902441 0247_ $$2WOS$$aWOS:000719865400004
000902441 0247_ $$2altmetric$$aaltmetric:112952412
000902441 037__ $$aFZJ-2021-04263
000902441 082__ $$a530
000902441 1001_ $$0P:(DE-Juel1)156259$$aNghiem, H. T. M.$$b0
000902441 245__ $$aSelf-energy method for time-dependent spectral functions of the Anderson impurity model within the time-dependent numerical renormalization group approach
000902441 260__ $$aWoodbury, NY$$bInst.$$c2021
000902441 3367_ $$2DRIVER$$aarticle
000902441 3367_ $$2DataCite$$aOutput Types/Journal article
000902441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637063847_18280
000902441 3367_ $$2BibTeX$$aARTICLE
000902441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902441 3367_ $$00$$2EndNote$$aJournal Article
000902441 520__ $$aThe self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green's functions and allows for a more accurate calculation of equilibrium spectral functions than is possible directly from the one-particle Green's function [Bulla et al., J. Phys.: Condens. Matter 10, 8365 (1998)], for example, within the numerical renormalization group method. In addition, the self-energy itself is a central quantity required in the dynamical mean field theory of strongly correlated lattice models. Here, we show how to generalize the self-energy method to the time-dependent situation for the prototype model of strong correlations, the Anderson impurity model. We use the equation-of-motion method to obtain closed expressions for the local Green's function in terms of a time-dependent correlation self-energy, with the latter being given as a ratio of a one-particle time-dependent Green's function and a higher-order correlation function. We benchmark this self-energy approach to time-dependent spectral functions against the direct approach within the time-dependent numerical renormalization group method. The self-energy approach improves the accuracy of time-dependent spectral function calculations, and the closed-form expressions for the Green's function allow for a clear picture of the time evolution of spectral features at the different characteristic time scales. The self-energy approach is of potential interest also for other quantum impurity solvers for real-time evolution, including time-dependent density matrix renormalization group and continuous-time quantum Monte Carlo techniques.
000902441 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000902441 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902441 7001_ $$0P:(DE-Juel1)130600$$aCosti, Theodoulos$$b1$$eCorresponding author$$ufzj
000902441 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.205113$$gVol. 104, no. 20, p. 205113$$n20$$p205113$$tPhysical review / B$$v104$$x1098-0121$$y2021
000902441 8564_ $$uhttps://juser.fz-juelich.de/record/902441/files/PhysRevB.104.205113.pdf$$yOpenAccess
000902441 909CO $$ooai:juser.fz-juelich.de:902441$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130600$$aForschungszentrum Jülich$$b1$$kFZJ
000902441 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000902441 9141_ $$y2021
000902441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902441 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000902441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902441 920__ $$lyes
000902441 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000902441 9801_ $$aFullTexts
000902441 980__ $$ajournal
000902441 980__ $$aVDB
000902441 980__ $$aUNRESTRICTED
000902441 980__ $$aI:(DE-Juel1)IAS-3-20090406
000902441 981__ $$aI:(DE-Juel1)PGI-2-20110106