001     902441
005     20240625095035.0
024 7 _ |a 10.1103/PhysRevB.104.205113
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/29029
|2 Handle
024 7 _ |a WOS:000719865400004
|2 WOS
024 7 _ |a altmetric:112952412
|2 altmetric
037 _ _ |a FZJ-2021-04263
082 _ _ |a 530
100 1 _ |a Nghiem, H. T. M.
|0 P:(DE-Juel1)156259
|b 0
245 _ _ |a Self-energy method for time-dependent spectral functions of the Anderson impurity model within the time-dependent numerical renormalization group approach
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637063847_18280
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green's functions and allows for a more accurate calculation of equilibrium spectral functions than is possible directly from the one-particle Green's function [Bulla et al., J. Phys.: Condens. Matter 10, 8365 (1998)], for example, within the numerical renormalization group method. In addition, the self-energy itself is a central quantity required in the dynamical mean field theory of strongly correlated lattice models. Here, we show how to generalize the self-energy method to the time-dependent situation for the prototype model of strong correlations, the Anderson impurity model. We use the equation-of-motion method to obtain closed expressions for the local Green's function in terms of a time-dependent correlation self-energy, with the latter being given as a ratio of a one-particle time-dependent Green's function and a higher-order correlation function. We benchmark this self-energy approach to time-dependent spectral functions against the direct approach within the time-dependent numerical renormalization group method. The self-energy approach improves the accuracy of time-dependent spectral function calculations, and the closed-form expressions for the Green's function allow for a clear picture of the time evolution of spectral features at the different characteristic time scales. The self-energy approach is of potential interest also for other quantum impurity solvers for real-time evolution, including time-dependent density matrix renormalization group and continuous-time quantum Monte Carlo techniques.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Costi, Theodoulos
|0 P:(DE-Juel1)130600
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1103/PhysRevB.104.205113
|g Vol. 104, no. 20, p. 205113
|0 PERI:(DE-600)2844160-6
|n 20
|p 205113
|t Physical review / B
|v 104
|y 2021
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/902441/files/PhysRevB.104.205113.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902441
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130600
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2019
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21