| Home > Publications database > Self-energy method for time-dependent spectral functions of the Anderson impurity model within the time-dependent numerical renormalization group approach > print |
| 001 | 902441 | ||
| 005 | 20240625095035.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.104.205113 |2 doi |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 2469-9977 |2 ISSN |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1538-4489 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a 2469-9950 |2 ISSN |
| 024 | 7 | _ | |a 2469-9969 |2 ISSN |
| 024 | 7 | _ | |a 2128/29029 |2 Handle |
| 024 | 7 | _ | |a WOS:000719865400004 |2 WOS |
| 024 | 7 | _ | |a altmetric:112952412 |2 altmetric |
| 037 | _ | _ | |a FZJ-2021-04263 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Nghiem, H. T. M. |0 P:(DE-Juel1)156259 |b 0 |
| 245 | _ | _ | |a Self-energy method for time-dependent spectral functions of the Anderson impurity model within the time-dependent numerical renormalization group approach |
| 260 | _ | _ | |a Woodbury, NY |c 2021 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637063847_18280 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green's functions and allows for a more accurate calculation of equilibrium spectral functions than is possible directly from the one-particle Green's function [Bulla et al., J. Phys.: Condens. Matter 10, 8365 (1998)], for example, within the numerical renormalization group method. In addition, the self-energy itself is a central quantity required in the dynamical mean field theory of strongly correlated lattice models. Here, we show how to generalize the self-energy method to the time-dependent situation for the prototype model of strong correlations, the Anderson impurity model. We use the equation-of-motion method to obtain closed expressions for the local Green's function in terms of a time-dependent correlation self-energy, with the latter being given as a ratio of a one-particle time-dependent Green's function and a higher-order correlation function. We benchmark this self-energy approach to time-dependent spectral functions against the direct approach within the time-dependent numerical renormalization group method. The self-energy approach improves the accuracy of time-dependent spectral function calculations, and the closed-form expressions for the Green's function allow for a clear picture of the time evolution of spectral features at the different characteristic time scales. The self-energy approach is of potential interest also for other quantum impurity solvers for real-time evolution, including time-dependent density matrix renormalization group and continuous-time quantum Monte Carlo techniques. |
| 536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Costi, Theodoulos |0 P:(DE-Juel1)130600 |b 1 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1103/PhysRevB.104.205113 |g Vol. 104, no. 20, p. 205113 |0 PERI:(DE-600)2844160-6 |n 20 |p 205113 |t Physical review / B |v 104 |y 2021 |x 1098-0121 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/902441/files/PhysRevB.104.205113.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:902441 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130600 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2019 |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-3-20090406 |k IAS-3 |l Theoretische Nanoelektronik |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-3-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|