000902442 001__ 902442
000902442 005__ 20240313094852.0
000902442 037__ $$aFZJ-2021-04264
000902442 041__ $$aEnglish
000902442 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$eCorresponding author$$ufzj
000902442 1112_ $$aSfn Neuroscience$$conline$$d2021-11-08 - 2021-11-11$$wUSA
000902442 245__ $$aAn adaptable analysis pipeline makes cortical wave phenomena comparable across heterogeneous data sets
000902442 260__ $$c2021
000902442 3367_ $$033$$2EndNote$$aConference Paper
000902442 3367_ $$2BibTeX$$aINPROCEEDINGS
000902442 3367_ $$2DRIVER$$aconferenceObject
000902442 3367_ $$2ORCID$$aCONFERENCE_POSTER
000902442 3367_ $$2DataCite$$aOutput Types/Conference Poster
000902442 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1638362754_6857$$xAfter Call
000902442 520__ $$aIn the past decades, neuroscience excelled at accumulating a rich, heterogeneous landscape of datasets and methodologies. However, it is a challenge to effectively leverage the benefits of such diversity by combining the insights from across experiments, species, and measurement techniques in order to build a cumulative understanding of brain function. Integration of this heterogeneity requires rigorous analysis workflows that offer to distill consistent, reproducible, comparable, and reusable conclusions. Aligning data from various sources enables not only “big-data” analysis approaches, but also allows to produce a broader experimental basis for validating models and theories across the experimental and computational scales of description. Here, we explore such an approach in the context of slow cortical waves (up to 5 Hz). Slow waves are persistently observed in sleep and anesthesia across various species and various measurement techniques [1,2]. Furthermore, such activity is expressed by various models [3]. First, we address the issue of providing a comparable quantitative description of the wave dynamics to compare such heterogeneous data on a conceptual level by designing a general and modular analysis pipeline approach that is adaptable to a variety of applications. Here, the key objective is to interface existing methods, standards, and tools in a flexible manner in order to serve the requirements of a wide range of datasets and research questions using a common set of analysis components. Moreover, by building on and co-developing other specialized open-source tools, we further emphasize the reusability and extendability of each of the pipeline components.Based on this design, we present the Slow Wave Analysis Pipeline (SWAP) as a concrete, reusable implementation to perform broad, detailed, and rigorous comparisons of slow wave characteristics, such as velocities or directions. We apply SWAP to a range of openly available ECoG [4,5,6] and calcium imaging [7,8] datasets and investigate the influences of experimental parameters such as the mice’s genetic strain, the type and dosage of anesthetics, the measurement technique and the spatial resolution. We also demonstrate the pipeline’s capabilities to benchmark specific methods within the analysis by switching them with another method and by analyzing the same pool of data.Finally, we discuss how the premise of reusability and modularity helps to derive other analysis pipelines for similar research endeavors to amplify collaborative research.References 1. Adamantidis, A. R., Herrera C. G., and Gent T. C. (2019) "Oscillating circuitries in the sleeping brain." Nature Reviews Neuroscience 1-17. doi: 10.1038/s41583-019-0223-4 2. Alkire, M. T., Hudetz A. G. , and Tononi G. (2008) "Consciousness and anesthesia." Science 322.5903: 876-880. doi: 10.1126/science.1149213 3. Sanchez-Vives, Maria V., Marcello Massimini, and Maurizio Mattia. (2017) "Shaping the default activity pattern of the cortical network." Neuron 94.5: 993-1001. doi: 10.1016/j.neuron.2017.05.015 4. Dasilva et al. (2020) “Altered Neocortical Dynamics in a Mouse Model of Williams–Beuren Syndrome”. Molecular Neurobiology, vol. 57, no 2, p. 765-777. doi: 10.1007/s12035-019-01732-4 5. Sanchez-Vives, M. (2019) “Cortical activity features in transgenic mouse models of cognitive deficits (Williams Beuren Syndrome)” [Data set]. EBRAINS. doi: 10.25493/DZWT-1T8 6. De Bonis, G. et al. (2019) "Analysis pipeline for extracting features of cortical slow oscillations". Frontiers in Systems Neuroscience 13:70. doi: 10.3389/fnsys.2019.00070 7. Resta, F., Allegra Mascaro, A. L., and Pavone, F. (2020). Study of Slow Waves (SWs) propagation through wide-field calcium imaging of the right cortical hemisphere of GCaMP6f mice [Data set]. EBRAINS. doi: 10.25493/3E6Y-E8G 8. Celotto, M. et al. (2020) “Analysis and Model of Cortical Slow Waves Acquired with Optical Techniques”. Methods and Protocols 3.1:14. doi: 10.3390/mps3010014
000902442 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902442 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000902442 7001_ $$0P:(DE-HGF)0$$aBonis, Giulia De$$b1
000902442 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b2
000902442 7001_ $$0P:(DE-HGF)0$$aCapone, Cristiano$$b3
000902442 7001_ $$0P:(DE-HGF)0$$aLuca, Chiara De$$b4
000902442 7001_ $$0P:(DE-HGF)0$$aMascaro, Anna Letizia Allegra$$b5
000902442 7001_ $$0P:(DE-HGF)0$$aResta, Francesco$$b6
000902442 7001_ $$0P:(DE-HGF)0$$aPavone, Francesco Saverio$$b7
000902442 7001_ $$0P:(DE-HGF)0$$aSanchez-Vives, Maria V.$$b8
000902442 7001_ $$0P:(DE-HGF)0$$aMattia, Maurizio$$b9
000902442 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b10$$ufzj
000902442 7001_ $$0P:(DE-Juel1)171568$$aDavison, Andrew$$b11
000902442 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b12
000902442 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b13$$ufzj
000902442 909CO $$ooai:juser.fz-juelich.de:902442$$pec_fundedresources$$pVDB$$popenaire
000902442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
000902442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b10$$kFZJ
000902442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b13$$kFZJ
000902442 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902442 9141_ $$y2021
000902442 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000902442 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000902442 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000902442 980__ $$aposter
000902442 980__ $$aVDB
000902442 980__ $$aI:(DE-Juel1)INM-6-20090406
000902442 980__ $$aI:(DE-Juel1)INM-10-20170113
000902442 980__ $$aI:(DE-Juel1)IAS-6-20130828
000902442 980__ $$aUNRESTRICTED
000902442 981__ $$aI:(DE-Juel1)IAS-6-20130828